3
分析:过D点作DE垂直于AD,交AB延长线于E点,连接CE,如图,则△DAE和△DBC为等腰直角三角形,根据其性质,可得△ABD≌△ECD,进而得到CE是高,且CE=AB,最后,根据三角形面积计算公式,求出即可;
解答:

解:过D点作DE垂直于AD,交AB延长线于E点,连接CE,如图,
则△DAE为等腰直角三角形,
∴∠2=45°,
∵BD⊥CD,∠DAB=∠DBC=45°,
∴△DBC也是等腰直角三角形,
在△ABD和△ECD中,

,
∴△ABD≌△ECD,
∴∠1=∠DAB=45°,
∴∠CEB=90°,
∴CE是高,且CE=AB,
∴三角形面积=

AB×CE=

AB
2=4.5,
解得,AB=3;
故答案为:3.
点评:本题主要考查了等腰直角三角形的性质和全等三角形的判定与性质,作辅助线,构建等腰直角三角形,是解答本题的关键.