精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,菱形OABC的一边OA在x轴正半轴上,OB=2,∠C=120°.将菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,则点B′的坐标为(  )
A.(2,
2
B.(2,-
2
C.(
2
2
D.(
2
,-
2

作B′H⊥x轴于H点,连结OB,如图,
∵四边形OABC为菱形,
∴∠AOC=180°-∠C=60°,OB平分∠AOC,
∴∠AOB=30°,
∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,
∴∠BOB′=75°,OB′=OB=2
∴∠AOB′=∠BOB′-∠AOB=45°,
∴△OBH为等腰直角三角形,
∴OH=B′H=
2
2
OB′=
2

∴点B′的坐标为(
2
,-
2
).
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,点O、B坐标分别为(0,0)、(3,0),将△ABO绕点O按逆时针方向旋转90°得到△OA′B′;
(1)在给的图中画出直角坐标系,并画出△OA′B′;
(2)连接AA′,判断三角形AOA′的形状,求出点A′的坐标和AA′的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将正方形ABCD中的△ABP绕点B顺时针旋转到△CBP的位置,若BP=4,求点P所走过的路径的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将△ABC绕着点C按顺时针方向旋转25°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是正方形ABCD内一点,PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,连接PP′,得到△PBP′.
(1)求证:△PBP′是等腰直角三角形;
(2)猜想△PCP′的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB,AD分别落在x轴、y轴上(如图1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB=4,BC=3,则图1和图2中点B点的坐标为______,点C的坐标______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连接EC.
(1)如果AB=AC,∠BAC=90°
①当点D在线段BC上时(不与点B重合),如图1,请你判断线段CE,BD之间的位置关系和数量关系(直接写出结论);
②当点D在线段BC的延长线上时,请你在图2中画出图形,并判断①中的结论是否仍然成立,并证明你的判断.
(2)如图3,若点D在线段BC上运动,DF⊥AD交线段CE于点F,且∠ACB=45°,AC=3
2
,试求线段CF长的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC是由△EBD旋转得到的,则旋转中心是(  )
A.点BB.点CC.点DD.点A

查看答案和解析>>

同步练习册答案