【题目】探究题:
(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?
(2)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?
(3)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?
(4)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?
【答案】(1)相等(2)∠B+∠D+∠E=360°(3)∠B=∠D+∠E(4)相等
【解析】试题分析:(1)过点E作EF∥AB,由平行线的性质可知∠B=∠BEF,∠D=∠DEF,再由角之间的关系即可得出结论;
(2)过点E作EF∥AB,由平行线的性质可知∠B+∠BEF=180°,∠D+∠DEF=180°,再由角之间的关系即可得出结论;
(3)过点E作EF∥AB,由平行线的性质可知∠B=∠BEF,∠D=∠DEF,再由角之间的关系即可得出结论;
(4)过点F作FM∥AB,用(1)的结论可知∠E=∠B+∠EFM,∠G=∠GFM+∠D,再由角之间的关系即可得出结论.
试题解析:解:(1)相等,过点E作EF∥AB,如图1所示.
∵EF∥AB,∴∠B=∠BEF.∵EF∥AB∥CD,∴∠D=∠DEF,∴∠BED=∠BEF+∠DEF=∠B+∠D.
(2)过点E作EF∥AB,如图2所示.
∵AB∥EF,∴∠B+∠BEF=180°.∵EF∥AB∥CD,∴∠D+∠DEF=180°,∴∠B+∠BEF+∠D+∠DEF=180°+180°.∵∠E=∠BEF+∠DEF,∴∠B+∠D+∠E=360°.
(3)过点E作EF∥AB,如图3所示.
∵AB∥EF,∴∠B=∠BEF.∵EF∥AB∥CD,∴∠D=∠DEF,∴∠E=∠BEF﹣∠DEF=∠B﹣∠D.
(4)过点F作FM∥AB,如图4所示.
∵AB∥FM,结合(1)结论,∴∠E=∠B+∠EFM.∵FM∥AB∥CD,结合(1)结论,∴∠G=∠GFM+∠D.又∵∠F=∠EFM+∠GFM,∴∠E+∠G=∠B+∠D+∠F.
科目:初中数学 来源: 题型:
【题目】据统计,2014年国庆黄金周期间,北京全市公园风景区共接待游客约13550000人次,将13550000用科学记数法表示应为( )
A.1355×104
B.1.355×106
C.0.1355×108
D.1.355×107
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.
(1)求证:CF为⊙O的切线;
(2)当BF=5,时,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知任意三角形ABC,
(1)如图1,过点C作DE∥AB,求证:∠DCA=∠A;
(2)如图1,求证:三角形ABC的三个内角(即∠A、∠B、∠ACB)之和等于180°;
(3)如图2,求证:∠AGF=∠AEF+∠F;
(4)如图3,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com