精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,A=D.

(1)求证:ACDE;

(2)BF=13,EC=5,求BC的长.

【答案】(1)证明见解析;(2)4.

【解析】

试题(1)、首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE(2)、根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13EC=5进而可得EB的长,然后可得答案.

试题解析:(1)、在△ABC△DFE∴△ABC≌△DFESAS), ∴∠ACE=∠DEF∴AC∥DE

(2)∵△ABC≌△DFE∴BC=EF∴CB﹣EC=EF﹣EC∴EB=CF∵BF=13EC=5

∴EB=4∴CB=4+5=9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,
(1)如图①,当点E在射线CB上时,E点坐标为

(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);
(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标;

(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,EAD的中点,延长CEBA交于点F,连接ACDF

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BCCD的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=C.

(B类)已知如图,四边形ABCD中,AB=BC,A=C,求证:AD=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.

(1)求证:MD=ME;
(2)填空:连接OE,OD,当∠A的度数为时,四边形ODME是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:
①点E和点F,点B和点D是关于中心O对称点;
②直线BD必经过点O;
③四边形DEOC与四边形BFOA的面积必相等;
④△AOE与△COF成中心对称.
其中正确的个数为(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线C1:y=ax2+4ax+4a+b(a≠0,b>0)的顶点为M,经过原点O且与x轴另一交点为A.
(1)求点A的坐标;
(2)若△AMO为等腰直角三角形,求抛物线C1的解析式;
(3)现将抛物线C1绕着点P(m,0)旋转180°后得到抛物线C2 , 若抛物线C2的顶点为N,当b=1,且顶点N在抛物线C1上时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=6,BC=8,AB=10

(1)尺规作图:作AD平分∠CAB,交BC于点D;

(2)求CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料,并解决问题:

(1)如图(1),等边ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将ABP绕顶点A旋转到ACP′处,此时ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.

请将下列解题过程补充完整。

∵△ACP′≌△ABP,

AP′=  =3,CP′=   =4,   =APB.

由题意知旋转角∠PA P′=60°,∴△AP P′    三角形,

P P′=AP=3,A P′P=60°。

易证P P′C为直角三角形,且∠P P′C=90°,

∴∠APB=AP′C=A P′P+P P′C=    °+   °=   °.

请你利用第(1)题的解答思想方法,解答下面问题:

已知如图(2),ABC中,∠CAB=90°,AB=AC,E、FBC上的点且∠EAF=45°,

求证:EF2=BE2+FC2

查看答案和解析>>

同步练习册答案