分析:根据在一条直线上的三点就不能确定一个圆可以判断A,再利用圆心角定理得出B正确;由当弦为直径时不垂直也平分,以及利用切线的判定对D进行判定.
解答:解:A.三个点不共线的点确定一个平面,故A不正确;
B.由圆心角、弧、弦的关系及圆周角定理可知:在同圆或等圆中,同弧或等弧所对圆周角 相等,故选项B正确;
C.平分弦的直径垂直于弦,被平分的弦不能是直径,故此选项错误;
D.与某圆一条半径垂直的直线是该圆的切线,错误,正确的应该是:一条直线垂直于圆的半径的外端,这条直线一定就是圆的切线.故此选项错误;
故选:B.
点评:此题主要考查了切线的判断和圆的确定、圆心角定理以及垂径定理等知识,熟练掌握定义是解题关键.