精英家教网 > 初中数学 > 题目详情
(2013•湖北)如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是
答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等
答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等
(写出一个即可).
分析:根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.
解答:解:根据题意可得出:四边形CBFE是平行四边形,
当CB=BF时,平行四边形CBFE是菱形,
当CB=BF;BE⊥CF;∠EBF=60°;BD=BF时,都可以得出四边形CBFE为菱形.
故答案为:如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.
点评:此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•湖北)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖北)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是
15°或165°
15°或165°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖北)如图,在平面直角坐标系中,双曲线y=
m
x
和直线y=kx+b交于A,B两点,点A的坐标为(-3,2),BC⊥y轴于点C,且OC=6BC.
(1)求双曲线和直线的解析式;
(2)直接写出不等式
m
x
>kx+b
的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖北)如图,已知抛物线y=ax2+bx-4经过A(-8,0),B(2,0)两点,直线x=-4交x轴于点C,交抛物线于点D.
(1)求该抛物线的解析式;
(2)点P在抛物线上,点E在直线x=-4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;
(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使d1=d2=
d32
?若存在,请直接写出d3的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案