精英家教网 > 初中数学 > 题目详情
精英家教网如图,二次函数y=ax2+bx+2的图象与y轴相交于点A,与反比例函数y=
2x
在第一象限的图象相交于D、E两点,已知点D、E分别在正方形ABCO的边AB、BC上.
(1)求点A、D、E的坐标;
(2)求这个二次函数的解析式,并用配方法求它的图象的顶点坐标.
分析:(1)由二次函数y=ax2+bx+2的图象与y轴相交于点A,即可求得点A的坐标,又由四边形ABCO是正方形,即可得点D的纵坐标为2,点E的横坐标为2,由点D与E在反比例函数y=
2
x
的图象上,即可求得点D与E的坐标;
(2)由点D、E在二次函数y=ax2+bx+2的图象上,利用待定系数法即可求得这个二次函数的解析式,然后利用配方法即可求得它的图象的顶点坐标.
解答:解:(1)∵二次函数y=ax2+bx+2的图象与y轴相交于点A,
∴点A的坐标为(0,2).(1分)
∵四边形ABCO是正方形,
∴点D的纵坐标为2,
当y=2时,2=
2
x
,x=1,
∴点D的坐标为D(1,2).(1分)
∵CO=AO=2,
∴点E的横坐标为2,
当x=2时,y=
2
2
=1,
∴点E的坐标为E(2,1).(1分)

(2)∵点D、E在二次函数y=ax2+bx+2的图象上,
a+b+2=2
4a+2b+2=1.
(1分)
解得
a=-
1
2
b=
1
2
.
(1分)
∴这个二次函数的解析式为y=-
1
2
x2+
1
2
x+2.(1分)
y=-
1
2
x2+
1
2
x+2,
=-
1
2
(x2-x)+2,
=-
1
2
(x2-x+
1
4
)+
1
8
+2,
=-
1
2
(x-
1
2
2+
17
8
.(2分)
二次函数图象的顶点坐标为(
1
2
17
8
).
点评:此题考查了正方形的性质,点与函数图象的关系,待定系数法求二次函数的解析式以及配方法求二次函数顶点坐标的知识.此题综合性很强,难度适中,解题的关键是注意方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案