精英家教网 > 初中数学 > 题目详情
12.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是(  )
A.$\sqrt{7}$B.2$\sqrt{2}$C.3D.2$\sqrt{3}$

分析 首先证明△ACA1,△BCB1是等边三角形,推出△A1BD是直角三角形即可解决问题.

解答 解:∵∠ACB=90°,∠ABC=30°,AC=2,
∴∠A=90°-∠ABC=60°,AB=4,BC=2$\sqrt{3}$,
∵CA=CA1
∴△ACA1是等边三角形,AA1=AC=BA1=2,
∴∠BCB1=∠ACA1=60°,
∵CB=CB1
∴△BCB1是等边三角形,
∴BB1=2$\sqrt{3}$,BA1=2,∠A1BB1=90°,
∴BD=DB1=$\sqrt{3}$,
∴A1D=$\sqrt{{A}_{1}{B}^{2}+B{D}^{2}}$=$\sqrt{7}$.
故选A.

点评 本题考查旋转的性质、30度角的直角三角形性质、等边三角形的判定和性质、勾股定理等知识,解题的关键是证明△ACA1,△BCB1是等边三角形,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.2016年3月2日--16日我国召开两会,两会参会代表实有代表2943人,2943人用科学记数法表示为(  )
A.2.943×102B.29.43×102C.2.943×103D.2.943×104

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是5$\sqrt{3}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.
(1)求整改过程中硫化物的浓度y与时间x的函数表达式;
(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若反比例函数y=$\frac{k}{x}$(k≠0)的图象经过点(1,-3),则一次函数y=kx-k(k≠0)的图象经过一、二、四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数y=$\frac{6}{x}$的图象上,它的“带线”l的解析式为y=2x-4,求此“路线”L的解析式;
(3)当常数k满足$\frac{1}{2}$≤k≤2时,求抛物线L:y=ax2+(3k2-2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正确的结论是①②③.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图①,直线y=$\frac{4}{3}$x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).
(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC-S△BOC,求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案