精英家教网 > 初中数学 > 题目详情
(2004•山西)已知二次函数y=x2+bx+c的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;
(2)设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;
(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.
【答案】分析:(1)利用待定系数法求出b,c的值后可求出该函数的解析式;
(2)证明△DPC∽△BAC,利用线段比求出各相关线段的值后易求点C的坐标;
(3)过M作MH⊥AC,MG⊥PC,推出△SCT是等腰直角三角形,M是△SCT的内切圆圆心,根据直线与圆的关系进行解答.
解答:解:(1)∵二次函数y=x2+bx+c的图象过点A(-3,6),B(-1,0),

解得
∴这个二次函数的解析式为:
y=x2-x-.(4分)
由解析式可求P(1,-2),C(3,0),(5分)
画出二次函数的图象;(6分)

(2)解法一:
易证:∠ACB=∠PCD=45°,
又已知:∠DPC=∠BAC,
∴△DPC∽△BAC,(8分)

易求AC=6,PC=2,BC=4,
∴DC=
∴OD=3-
∴D(,0).(10分)
解法二:过A作AE⊥x轴,垂足为E,
设抛物线的对称轴交x轴于F,
亦可证△AEB∽△PFD,(8分)

易求:AE=6,EB=2,PF=2,
∴FD=
∴OD=+1=
∴D(,0);(10分)

(3)存在.
①过M作MH⊥AC,MG⊥PC垂足分别为H、G,设AC交y轴于S,CP的延长线交y轴于T,
∵△SCT是等腰直角三角形,M是△SCT的内切圆圆心,
∴MG=MH=OM,(11分)
又∵MC=OM且OM+MC=OC,
OM+OM=3,
得OM=3-3,
∴M(3-3,0)(12分)
②在x轴的负半轴上,存在一点M′,
同理OM′+OC=M′C,OM′+OC=OM′
得OM′=3+3
∴M′(14分)
即在x轴上存在满足条件的两个点.
点评:本题综合考查的是二次函数的有关知识以及直线与圆的关系,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•山西)已知二次函数y=x2+bx+c的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;
(2)设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;
(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2004•山西)已知:如图,⊙O1与⊙O2相交于点A和点B,且点O1在⊙O2上,过点A的直线CD分别与⊙O1、⊙O2交于点C、D,过点B的直线EF分别与⊙O1、⊙O2交于点E、F,⊙O2的弦O1D交AB于P.
求证:(1)CE∥DF;
(2)O1A2=O1P•O1D.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《相交线与平行线》(02)(解析版) 题型:解答题

(2004•山西)已知:如图,⊙O1与⊙O2相交于点A和点B,且点O1在⊙O2上,过点A的直线CD分别与⊙O1、⊙O2交于点C、D,过点B的直线EF分别与⊙O1、⊙O2交于点E、F,⊙O2的弦O1D交AB于P.
求证:(1)CE∥DF;
(2)O1A2=O1P•O1D.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《整式》(03)(解析版) 题型:填空题

(2004•山西)已知x+y=1,则x2+xy+y2=   

查看答案和解析>>

同步练习册答案