精英家教网 > 初中数学 > 题目详情

在正方形ABCD中,∠EAF=45°,把△ADF绕着点A按顺时针方向旋转90°后,得到△ABM.试说明ME=EF.

证明:∵△ADF绕着点A按顺时针方向旋转90°后,得到△ABM,
∴AM=AF,BM=DF,∠ABM=∠D=90°,∠FAM=90°,
而∠ABC=90°,
∴点M、B、E共线,
∵∠EAF=45°,
∴∠MAE=45°,
∵在△MAE和△FAE中

∴△MAE≌△FAE(SAS),
∴ME=EF.
分析:根据旋转的性质得到AM=AF,BM=DF,∠ABM=∠D=90°,∠FAM=90°,由∠ABC=90°得到点M、B、E共线,由∠EAF=45°得到∠MAE=45°,利用“SAS”可证明△MAE≌△FAE,则ME=EF.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质以及正方形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案