精英家教网 > 初中数学 > 题目详情

如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=________cm,∠AOB=________.

6    120°
分析:由AB垂直于OC,根据垂径定理得到D为AB的中点,可得AB=2AD=2BD,再由AB平分OC,可得OD=CD,由半径OC的长求出POD的长,在直角三角形AOD中,由半径OA及OD的长,利用勾股定理求出AD的长,可得出AB的长;由OA=OB,OD垂直于AB,根据三线合一得到OD为角平分线,可得出∠AOB=2∠AOD,而在直角三角形AOD中,利用锐角三角函数定义求出sin∠AOD的值,利用特殊角的三角函数值求出∠AOD的度数,可得出∠AOB的度数.
解答:设OC与AB的交点为D,如图所示:

∵半径OC⊥AB,
∴点D为弦AB的中点,即AD=BD=AB,
又∵弦AB垂直平分OC,且OC=6cm,
∴OD=CD=OC=3cm,
在Rt△AOD中,OA=OC=6cm,OD=3cm,
根据勾股定理得:AD==3cm,
则AB=2AD=6cm,
∵OA=OB,OD⊥AB,
∴OC为∠AOB的平分线,即∠AOC=∠BOC=∠AOB,
在Rt△AOD中,sin∠AOC===
∴∠AOC=60°,
则∠AOB=2∠AOC=120°.
故答案为:6;120°
点评:此题考查了垂径定理,勾股定理,等腰三角形的性质,特殊角的三角函数值,以及锐角三角函数定义,垂径定理的内容为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线向下平移与⊙O相切时,移动的距离应等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,若l要与⊙O相切,则要沿OC所在直线向下平移(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AE∥BC,过点C作CD∥BA交精英家教网EA延长线于点D,延长CO交AE于点F.
(1)求证:CD为⊙O的切线;
(2)若BC=5,AB=8,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径OC=10cm,直线l⊥CO,垂足为H,交⊙O于A、B两点,AB=16cm,则直线l平移
4或16
4或16
厘米时能与⊙O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径OC与直径AB垂直,点P在OB上,CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.
(1)求证:ED是⊙O的切线;
(2)当OC=2,ED=2时,求∠E的正切值tanE和图中阴影部分的面积.

查看答案和解析>>

同步练习册答案