精英家教网 > 初中数学 > 题目详情
(2013•南充)如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为BC边上一点(不与B,C重合),过点P作∠APE=∠B,PE交CD于E.
(1)求证:△APB∽△PEC;
(2)若CE=3,求BP的长.
分析:(1)由等腰梯形ABCD中,AD∥BC,AB=CD,可得∠B=∠C=60°,又由∠APE+∠EPC=∠B+∠BAP,∠APE=∠B,可证得∠BAP=∠EPC,根据有两角对应相等的三角形相似,即可证得:△APB∽△PEC;
(2)首先过点A作AF∥CD交BC于点F,则四边形ADCF是平行四边形,△ABF为等边三角形,又由△APB∽△PEC,根据相似三角形的对应边成比例,即可求得答案.
解答:(1)证明:∵等腰梯形ABCD中,AD∥BC,AB=CD,
∴∠B=∠C=60°,
∵∠APC=∠B+∠BAP,
即∠APE+∠EPC=∠B+∠BAP,
∵∠APE=∠B,
∴∠BAP=∠EPC,
∴△APB∽△PEC;

(2)解:过点A作AF∥CD交BC于点F,
则四边形ADCF是平行四边形,△ABF为等边三角形,
∴CF=AD=3,AB=BF=7-3=4,
∵△APB∽△PEC,
BP
EC
=
AB
PC

设BP=x,则PC=7-x,
∵EC=3,AB=4,
x
3
=
4
7-x

解得:x1=3,x2=4,
经检验:x1=3,x2=4是原分式方程的解,
∴BP的长为:3或4.
点评:此题考查了等腰梯形的性质、相似三角形的判定与性质以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南充)如图,正方形ABCD的边长为2
2
,过点A作AE⊥AC,AE=1,连接BE,则tanE=
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南充)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.
求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南充)如图,二次函数y=x2+bx-3b+3的图象与x轴交于A,B两点(点A在点B的左边),交y轴于点C,且经过点(b-2,2b2-5b-1).
(1)求这条抛物线的解析式;
(2)⊙M过A,B,C三点,交y轴于另一点D,求点M的坐标;
(3)连接AM,DM,将∠AMD绕点M顺时针旋转,两边MA,MD与x轴,y轴分别交于点E,F.若△DMF为等腰三角形,求点E的坐标.

查看答案和解析>>

同步练习册答案