精英家教网 > 初中数学 > 题目详情
(2007•临夏州)在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B.
(1)求直线CB的解析式;
(2)若抛物线y=ax2+bx+c的顶点在直线BC上,与x轴的交点恰为点E、F,求该抛物线的解析式;
(3)试判断点C是否在抛物线上;
(4)在抛物线上是否存在三个点,由它构成的三角形与△AOC相似?直接写出两组这样的点.

【答案】分析:(1)连接AC,由Rt△AOC∽Rt△COB?,求得OB的长,即可得出确定B点坐标,进而可根据B、C坐标用待定系数法求得BC直线的解析式.
(2)根据圆心的坐标及圆的半径不难得出E、F的坐标.根据抛物线和圆的对称性可知:抛物线顶点和圆心的横坐标必相等,据此可根据直线BC的解析式求出抛物线的顶点坐标.然后根据E、F及顶点坐标求出抛物线的解析式.
(3)在(1)中已经求得C点坐标,将C点坐标代入抛物线的解析式中进行判断即可.
(4)在(1)中已经求得∠OAC=60°,∠OCA=30°,如果连接CF,那么∠CFE=∠OAC=30°,由于E、F同在抛物线上,因此连接CE后,三角形CEF就与三角形OAC相似.那么C、E、F就是符合条件的点.而根据抛物线的对称性可知,C点关于抛物线对称轴的对称点和E、F组成的直角三角形也应该符合条件.
解答:解:(1)方法一:
连接AC,则AC⊥BC.
∵OA=2,AC=4,
∴OC=
又∵Rt△AOC∽Rt△COB,

∴OB=6.
∴点C坐标为(0,2),点B坐标为(-6,0).
设直线BC的解析式为y=kx+b,
可求得直线BC的解析式为y=x+2
方法二:
连接AC,则AC⊥BC.
∵OA=2,AC=4,
∴∠ACO=30°,∠CAO=60°.
∴∠CBA=30°.
∴AB=2AC=8.
∴OB=AB-AO=6.
以下同证法一.

(2)由题意得,⊙A与x轴的交点分别为E(-2,0)、F(6,0),抛物线的对称轴过点A为直线x=2.
∵抛物线的顶点在直线BC上,
∴抛物线顶点坐标为(2,).
设抛物线解析式为y=a(x-2)2+
∵抛物线过点E(-2,0),
∴0=a(-2-2)2+
解得a=-
∴抛物线的解析式为y=-(x-2)2+
即y=-x2+x+2

(3)点C在抛物线上.因为抛物线与y轴的交点坐标为(0,2),如图.

(4)存在,这三点分别是E、C、F与E、C′、F,C′的坐标为(4,).
即△ECF∽△AOC、△EC′F∽△AOC,如图.
点评:本题考查了圆的相关知识、二次函数解析式的确定、相似三角形的判定和性质等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2007•临夏州)3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•临夏州)顺次连结任意四边形各边中点所得到的四边形一定是
平行四边形
平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•临夏州)[(1)-(3),10分]如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)证明图(2)所得结论;
(3)证明图(4)所得结论.
(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;图(4)与图(6)中的等式有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•临夏州)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.使用上边的事实,解答下面的问题:
用长度分别为2、3、4、5、6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.

查看答案和解析>>

同步练习册答案