【题目】如图,在△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1坐标为( )
A.(-1,-)
B.(-1,-)或(-2,0)
C.(-,1)或(0,﹣2)
D.(-,1)
【答案】
【解析】
试题分析:需要分类讨论:在把△ABO绕点O顺时针旋转150°和逆时针旋转150°后得到△A1B1O时点A1的坐标,即:
∵△ABO中,AB⊥OB,OB=,AB=1,
∴tan∠AOB=,
∴∠AOB=30°.
如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,
则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,
则易求A1(﹣1,﹣);
如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,
则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,
则易求A1(﹣2,0);
综上所述,点A1的坐标为(﹣1,-)或(﹣2,0).
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.
(1)若∠ABC=70°,则∠MNA的度数是__.
(2)连接NB,若AB=8cm,△NBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题是真命题的是( )
A.对角线互相垂直的四边形是菱形
B.平行四边形的对角线互相平分
C.三角形的外角等于它其中两个内角的和
D.过直线外一点有无数条直线与这条直线平行
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标_____(用含a的代数式表示);
(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.
(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个正方形花圃边长增加2m,所得新正方形花圃的周长是28m,设原正方形花圃的边长为xm,由此可得方程为( )
A. x+2=28 B. 4(x+2)=28 C. 2(x+2)=28 D. 4x+2=28
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com