精英家教网 > 初中数学 > 题目详情
某住宅小区,为美化环境,提高居民区生活质量,要建一个八边形居民广场(平面图如图所示),其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.精英家教网
(1)设矩形的边长AB=x(米),AM=y(米),用含x的代数式表示y;
(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元,在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元,在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为S(元),求S关于x的函数关系式;
②若该工程的银行贷款为235000元,问仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能请说明理由;
③若该工程在银行贷款的基础上,又增加奖金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.
分析:(1)根据四个矩形都相同,因此四个直角三角形的直角边都相等,那么可根据4个矩形的面积+中间的正方形的面积=800来列出关于x、y的函数关系式;
(2)①(1)中已得出了矩形的长,那么根据总造价S=4个矩形区域的造价+正方形区域的造价+4个直角三角形区域的造价,来列出关于S、x的函数关系式;
②可将①得出的二次函数式转换成顶点式的表达式,然后看看二次函数的最小值是否超过235000即可;
③根据②即可判定出增加奖金后能否完成该工程,如果能只需将S=235000+73000代入函数式中求出x的值即可得出所求的方案.
解答:解:(1)y=
800-x2
4x
(0<x<20
2
);

(2)①S=2100x2+105×4xy+40×4×
1
2
y2=2000x2+
3200000
x2
+76000(0<x<20);
②∵S=2000(x2+
1600
x2
-80)+76000+2000×80=2000(x-
40
x
2+236000>235000
∴仅靠银行贷款不能完成该工程的建设任务;
③由S=235000+73000=308000
得:2000x2+
320000
x2
+76000=308000
即x2-116+
1600
x2
=0
设x2=t,得t2-116t+1600=0
解得:t1=100,t2=16
当t=100时,x2=100,x=10(负数不合题意,舍去)此时y=17.5;
当t=16时,x2=16,x=4(负数不合题意,舍去),此时y=49.
因此设计方案应为:
1.正方形区域的边长为10米;
四个相同的矩形区域的长和宽分别为17.5米和10米;
四个相同的三角形区域的直角边长均为17.5米.
2.正方形区域的边长为4米;
四个相同的矩形区域的长和宽分别为49米和4米;
四个相同的三角形区域的直角边长均为49米.
点评:本题主要考查了二次函数的应用,本题中二次函数式较复杂,但是只要抓住其特点即可正确进行解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图,其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800m2
(1)设矩形的边长AB=x(m),AM=y(m),用含x的代数式表示y为
 

(2)现计划在正方形区域上建成雕塑和花坛,平均每平方米造价为2 100元,在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元,在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为s(元),求s关于x的函数关系;
②若该工程的银行贷款为235 000元,问仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由;
③若该工程在银行贷款的基础上,又增加资金73 000元,请问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某住宅小区,为美化环境,提高居民的生活质量,想要建造一个八边形的居民广场,如图,其中正方形MNPQ同长方形(图中的阴影部分)的面积的和为a(a+4b),正方形MNPQ的边长为a,则八边形ABCDEFGH的面积为(  )
A、a2+4ab+2b2B、a2+4ab+4b2C、a2+8abD、a2+6ab+2b2

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2004•云南)某住宅小区,为美化环境,提高居民区生活质量,要建一个八边形居民广场(平面图如图所示),其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.
(1)设矩形的边长AB=x(米),AM=y(米),用含x的代数式表示y;
(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元,在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元,在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为S(元),求S关于x的函数关系式;
②若该工程的银行贷款为235000元,问仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能请说明理由;
③若该工程在银行贷款的基础上,又增加奖金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年云南省中考数学试卷(解析版) 题型:解答题

(2004•云南)某住宅小区,为美化环境,提高居民区生活质量,要建一个八边形居民广场(平面图如图所示),其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.
(1)设矩形的边长AB=x(米),AM=y(米),用含x的代数式表示y;
(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元,在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元,在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为S(元),求S关于x的函数关系式;
②若该工程的银行贷款为235000元,问仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能请说明理由;
③若该工程在银行贷款的基础上,又增加奖金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.

查看答案和解析>>

同步练习册答案