精英家教网 > 初中数学 > 题目详情

在△ABC中,∠A:∠B:∠C=1:2:3,则a:b:c=________.

1::2
分析:首先根据∠A、∠B、∠C的度数之比确定△ABC是一个内角为30°的直角三角形,然后根据该特殊直角三角形的三边关系求出其三边之比.
解答:设∠A、∠B、∠C的度数分别为x、2x、3x,则x+2x+3x=180°,解得x=30°
∴2x=60°,3x=90°
∴∠A、∠B、∠C的度数分别为30°、60°、90°.
∴△ABC是直角三角形
又∵∠A=30°
∴c=2a
b===a
∴a:b:c=a:a:2a=1::2
故填1::2.
点评:确定该三角形是特殊的直角三角形是解答问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案