精英家教网 > 初中数学 > 题目详情
6.已知平面直角坐标中有一点M(2-a,3a+6),点M到两坐标轴的距离相等,求M的坐标.

分析 根据点的到两坐标轴距离相等,点M的横坐标与纵坐标相等或互为相反数列方程求出a的值,再求解即可.

解答 解:∵点M的坐标为(2-a,3a+6),且点M到两坐标轴的距离相等,
∴2-a=3a+6或(2-a)+(3a+6)=0,
解得,a=-1或a=-4,
∴M点坐标为(3,3)或(6,-6).

点评 本题考查了点的坐标,理解点的到两坐标轴距离相等,点M的横坐标与纵坐标相等或互为相反数两种情况是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.在等边三角形ABC中,E为直线AB上一点,连接EC.ED与直线BC交于点D,ED=EC.
(1)如图1,AB=1,点E是AB的中点,求BD的长;
(2)点E是AB边上任意一点(不与AB边的中点和端点重合),依题意,将图2补全,判断AE与BD间的数量关系并证明;
(3)点E不在线段AB上,请在图3中画出符合条件的一个图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
 获奖等次 频数 频率
 一等奖 10 0.05
 二等奖 20 0.10
三等奖 30 b
 优胜奖 a 0.30
 鼓励奖 80 0.40
请根据所给信息,解答下列问题:
(1)a=60,b=0.15,且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)若我市初中生共有16000人,竞赛活动获奖率为40%,获三等奖以上的学生表示对“足球比较喜欢”,请你估计我市初中生对“足球比较喜欢”的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,等边△ABC中,AH⊥BC于点H,点D是AB上任意一点,以CD为边作等边△CDE,连结BE.
(1)求证:BE⊥AB;
(2)当点E在AH的延长线上时,试求$\frac{AD}{AH}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则AF的长为4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算$\sqrt{3}$($\sqrt{27}$-$\sqrt{3}$)的结果是6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC交CD于点E、F.AE、BF交于点G.
(1)求证:AE⊥BF;
(2)判断DE和CF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,CD为⊙O的直径,弦AB垂直于CD,垂足为H,∠EAD=∠HAD.
(1)求证:AE为⊙O的切线;
(2)延长AE与CD的延长线交于点P,过D 作DE⊥AP,垂足为E,已知PA=2,PD=1,求⊙O的半径和DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在等边△ABC中,E是边BC上的一个动点(不与点B,C重合),∠AEF=60°,EF交△ABC外角平分线CD于点F.
(1)如图1,当点E是BC的中点时,请你补全图形,直接写出$\frac{CF}{AE}$的值,并判断AE与EF的数量关系;
(2)当点E不是BC的中点时,请你在图(2)中补全图形,判断此时AE与EF的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案