精英家教网 > 初中数学 > 题目详情

如图,△ABC为等边三角形,∠1=∠2=∠3,求∠BEC的度数.

解:∵△ABC为等边三角形,
∴∠ACB=60°
∴∠3+∠BCE=60°
∵∠2=∠3
∴∠BEF=∠2+∠BCE=60°
∴∠BEC=180°-(∠2+∠BCE)=120°.
分析:求∠BEC的度数,可利用180°减去∠BEC的外角进行求解,只要求得∠BEF即可,利用三角形的外角的性质可得答案.
点评:本题考查了等边三角形的性质及三角形外角的性质;利用外角的性质得到∠BEF=60°是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,△ABC为等边三角形,P为三角形内一点,将△ABP绕A点逆时针旋转60°后与△ACP′重合,若AP=3,则PP′=
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF;
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE.
①△ACD与△CBF是全等三角形吗?说说你的理由.
②ED=FC吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边△,EC=ED,∠CED=120゜,P为BD的中点,求证:AE=2PE.

查看答案和解析>>

同步练习册答案