精英家教网 > 初中数学 > 题目详情
提出问题:
(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;
类比探究:
(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;
综合运用:
(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.
考点:四边形综合题
专题:几何综合题,探究型
分析:(1)由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DH;
(2)EF=GH.将FE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;
(3)易得△AHF∽△CGE,所以
AF
CE
=
FH
EG
=
FO
OE
=
1
2
,由EC=2得AF=1,过F作FP⊥BC于P,根据勾股定理得EF=
17
,因为FH∥EG,所以
FO
FE
=
HO
HG
,根据(2)①知EF=GH,所以FO=HO,再求得三角形FOH与三角形EOG的面积相加即可.
解答:解:(1)∵四边形ABCD是正方形,
∴AB=DA,∠ABE=90°=∠DAH.
∴∠HAO+∠OAD=90°.
∵AE⊥DH,
∴∠ADO+∠OAD=90°.
∴∠HAO=∠ADO.
∴△ABE≌△DAH(ASA),
∴AE=DH.

(2)EF=GH.
将FE平移到AM处,则AM∥EF,AM=EF.
将GH平移到DN处,则DN∥GH,DN=GH.

∵EF⊥GH,
∴AM⊥DN,
根据(1)的结论得AM=DN,所以EF=GH;

(3)∵四边形ABCD是正方形,
∴AB∥CD
∴∠AHO=∠CGO
∵FH∥EG
∴∠FHO=∠EGO
∴∠AHF=∠CGE
∴△AHF∽△CGE
AF
CE
=
FH
EG
=
FO
OE
=
1
2

∵EC=2
∴AF=1
过F作FP⊥BC于P,
根据勾股定理得EF=
17

∵FH∥EG,
FO
FE
=
HO
HG

根据(2)①知EF=GH,
∴FO=HO.
S△FOH=
1
2
FO2=
1
2
×(
1
3
EF)2=
17
18

S△EOG=
1
2
EO2=
1
2
×(
2
3
EF)2=
68
18

∴阴影部分面积为
85
18
点评:本题考查了三角形的综合知识.用到全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

四川省第十二届运动会将于2014年8月16日在我市举行,我市约3810000人民热烈欢迎来自全省的运动健儿.请把数据3810000用科学记数法表示为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知A(-3,0),C(0,
3
),点B在x轴正半轴上,且OB=
1
3
OA.
(1)求出∠ABC的度数;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一个点也随之停止运动,当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值;
(3)在(2)的情况下,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.
(1)若AE=CF;
①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求AP•AF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)解方程:2-
2x+1
3
=
1+x
2

(2)解方程组:
3x-y=7
x+3y=-1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…∠A2013BC与∠A2013CD的平分线相交于点A2014,得∠A2014,根据题意填空:
(1)如果∠A=80°,则∠A1=
 
°,∠A2=
 
°
(2)如果∠A=α,则∠A2014=
 
.(直接用α代数式)

查看答案和解析>>

科目:初中数学 来源: 题型:

热气球的探测器显示,从热气球底部A处看一栋高楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球A处与高楼的水平距离为120m,这栋高楼有多高(
3
≈1.732,结果保留小数点后一位)?

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)-t3•(-t)4•(-t)5
(2)(p-q)4÷(q-p)3•(p-q)2
(3)a2•a4+(-a23
(4)(-2a2b34+(-a)8•(2b43
(5)4-(-2)-2-32÷(3.14-π)0
(6)(-0.125)2014×82013

查看答案和解析>>

科目:初中数学 来源: 题型:

25的算术平方根是
 
16
的平方根是
 
,-8的立方根是
 

查看答案和解析>>

同步练习册答案