精英家教网 > 初中数学 > 题目详情

若关于x的方程2x3n-5+6=10是一元一次方程,则n的值为________.

2
分析:根据一元一次方程的定义可得3n-5=1,解方程即可得到n的值.
解答:由题意得:3n-5=1,
解得:n=2,
故答案为:2.
点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若关于x的方程:10-
k(x+3)
5
=3x-
k(x-2)
4
与方程5-2(x+1)=
1-2x
3
的解相同,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读以下材料:
若关于x的三次方程x3+ax2+bx+c=0(a、b、c为整数)有整数解n,则将n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
∴c=-n3-an2-bn=-n(n2+an+b)
∵a、b、n都是整数∴n2+an+b是整数∴n是c的因数.
上述过程说明:整数系数方程x3+ax2+bx+c=0的整数解n只能是常数项c的因数.
如:∵方程x3+4x2+3x-2=0中常数项-2的因数为:±1和±2,
∴将±1和±2分别代入方程x3+4x2+3x-2=0得:x=-2是该方程的整数解,-1、1、2不是方程的整数解.
解决下列问题:
(1)根据上面的学习,方程x3+2x2+6x+5=0的整数解可能
±1,±5
±1,±5

(2)方程-2x3+4x2+12x-14=0有整数解吗?若有,求出整数解;若没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读以下材料:
若关于x的三次方程x3+ax2+bx+c=0(a、b、c为整数)有整数解n,则将n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
∴c=-n3-an2-bn=-n(n2+an+b)
∵a、b、n都是整数∴n2+an+b是整数∴n是c的因数.
上述过程说明:整数系数方程x3+ax2+bx+c=0的整数解n只能是常数项c的因数.
如:∵方程x3+4x2+3x-2=0中常数项-2的因数为:±1和±2,
∴将±1和±2分别代入方程x3+4x2+3x-2=0得:x=-2是该方程的整数解,-1、1、2不是方程的整数解.
解决下列问题:
(1)根据上面的学习,方程x3+2x2+6x+5=0的整数解可能______;
(2)方程-2x3+4x2+12x-14=0有整数解吗?若有,求出整数解;若没有,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

若关于x的方程:10-
k(x+3)
5
=3x-
k(x-2)
4
与方程5-2(x+1)=
1-2x
3
的解相同,求k的值.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江苏省某校九年级(上)期末数学试卷(解析版) 题型:解答题

阅读以下材料:
若关于x的三次方程x3+ax2+bx+c=0(a、b、c为整数)有整数解n,则将n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
∴c=-n3-an2-bn=-n(n2+an+b)
∵a、b、n都是整数∴n2+an+b是整数∴n是c的因数.
上述过程说明:整数系数方程x3+ax2+bx+c=0的整数解n只能是常数项c的因数.
如:∵方程x3+4x2+3x-2=0中常数项-2的因数为:±1和±2,
∴将±1和±2分别代入方程x3+4x2+3x-2=0得:x=-2是该方程的整数解,-1、1、2不是方程的整数解.
解决下列问题:
(1)根据上面的学习,方程x3+2x2+6x+5=0的整数解可能______;
(2)方程-2x3+4x2+12x-14=0有整数解吗?若有,求出整数解;若没有,说明理由.

查看答案和解析>>

同步练习册答案