已知:一次函数y=2x+1与y轴交于点C,点A(1,n)是该函数与反比例函数在第一象限内的交点.
(1)求点的坐标及的值;
(2)试在轴上确定一点,使,求出点的坐标.
(1)(1,3),3;(2)(2,0)或(-2,0).
解析试题分析:(1)将A点坐标代入一次函数解析式求出n的值,再把A点坐标,代入反比例解析式求出k的值,即可确定出反比例解析式.
(2)过A点作AD⊥y轴,根据已知条件即可判断出△COB≌△ADC,因此OB=DC=2,从而确定点B的坐标.
试题解析:(1)点A(1,n)在y=2x+1的图象上,
∴n=3,A(1,3)
点A(1,3)在的图象上,
∴k=3
(2)如图,作AD⊥y轴,垂足为D
∵OC=AD=1,BC=AC
且∠COB=∠ADC=90°
∴△COB≌△ADC
∴OB=DC=2
∴B点坐标为(2,0)或(-2,0)
考点: 反比例函数.
科目:初中数学 来源: 题型:解答题
如图,矩形OABC放置在第一象限内,已知A(3,0),∠AOB=30°,反比例函数y=的图像交BC、AB于点D、E.
(1)若点D为BC的中点,试证明点E为AB的中点;
(2)若点A关于直线OB的对称点为F,试探究:点F是否落在该双曲线上?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
函数和的图象关于y轴对称,我们定义函数和相互为“影像”函数。
类似地,如果函数和的图象关于y轴对称,那么我们定义函数和互为“影像”函数。
(1)请写出函数的“影像”函数: ;
(2)函数 的“影像”函数是;
(3)如果,一条直线与一对“影像”函数和的图象分别交于点A、B、C(点A、B在第一象限),如果CB: BA=1:2,点C在函数的“影像”函数上的对应点的横坐标是1,求点B的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为m,DC的长为m.
(1)求与之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
一次函数的图像与反比例函数的图象交于A(-2,1),B(1,n)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求△OAB的面积.
(3)写出反比例函数值大于一次函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,一次函数y=ax+b的图象与反比例函数的图象交于A(﹣2,m),B
(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.
(1)求这两个函数的解析式:
(2)求△ADC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com