已知在三角形中∠C=90°,AC=3,BC=4,则△ABC的内切圆的面积是 .
【答案】
分析:首先求出AB的长,再连圆心和各切点,利用切线长定理用半径表示AF和BF,而它们的和等于AB,得到关于r的方程,求出圆的面积即可.
解答:
解:连OD,OE,OF,如图,设半径为r.则OE⊥BC,OF⊥AB,OD⊥AC,CD=r.
∵∠C=90°,BC=4,AC=3,
∴AB=5,
∴BE=BF=4-r,AF=AD=3-r,
∴4-r+3-r=5,
∴r=1.
∴△ABC的内切圆的面积是:π×1
2=π,
故答案为:π.
点评:此题主要考查了勾股定理以及直角三角形内切圆半径求法等知识,熟练掌握切线长定理和勾股定理.此题让我们记住一个结论:直角三角形内切圆的半径等于两直角边的和与斜边的差的一半.实际上直角三角形外接圆的半径等于斜边的一半.