精英家教网 > 初中数学 > 题目详情

已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

证明:①连接OE,
∵OD∥AB,
∴∠COD=∠A,∠DOE=∠OEA,
∵OA=OE,
∴∠A=∠OEA,
∴∠COD=∠DOE,
在△COD和△EOD中,

∴△COD≌△EOD(SAS),
∴∠OCD=∠OED=90°,
∴DE⊥OE,
则DE为圆O的切线;
②由△COD≌△EOD,得到CD=ED,
∵BC为圆O的切线,BA为圆O的割线,
∴BC2=BE•BA,
∵O为AC的中点,OD∥AB,
∴D为BC的中点,即OD为△ABC的中位线,
∴BA=2OD,BC=2CD=2DE,
则4DE2=BE•2OD,即2DE2=BE•OD.
分析:①连接OE,由OD与AB平行得到一对同位角相等,一对内错角相等,再由半径相等,利用等边对等角得到一对角相等,等量代换得到一对角相等,利用SAS得出三角形OCD与三角形OED全等,由全等三角形对应角相等及垂直的定义得到ED垂直于OE,即ED为圆O的切线;
②由第一问的全等得到CD=ED,再由BC为圆的切线,BA为圆的割线,利用切割线定理列出关系式,根据O为AC中点,OD平行于AB,得到D为BC中点,即OD为三角形ABC的中位线,利用三角形中位线定理得到AB=2OD,BC=2CD=2DE,代换即可得证.
点评:此题考查了切线的判定,切割线定理,全等三角形的判定与性质,中位线定理,熟练掌握切线的判定方法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案