精英家教网 > 初中数学 > 题目详情
精英家教网如图,正方形ABCD的边长为1,E为BC上任意一点,EF⊥AC于F,EG⊥BC于G,则EF+EG的值为(  )
A、
1
2
B、2
C、3
D、
2
分析:由EF⊥AC于F,EG⊥BD于G知及正方形性质知,BG=EG=OF,OG=EF,所以EF+EG=OG+BG=OB,再根据边长即可求得.
解答:解:由正方形性质知,AC与BD相互垂直平分,且∠DBC=∠ACB=45°,
又正方形ABCD的边长为1,
∴AC=BD=
2

又由EF⊥AC,EG⊥BD知,四边形OGEF为矩形,
∴EF=OG,
又∠DBC=45°,EG⊥BD,
∴BG=EG,
∴EF+EG=OG+BG=OB=
2
2

故选A.
点评:本题考查了正方形对角线相互垂直平分相等及矩形对角线平分相等的性质,是基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案