精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,二次函数的图象经过A(2,0)B(0,-6)两点

(1)求该二次函数的解析式
(2)设该二次函数的对称轴与轴交于点C,连结BA、BC,求△ABC的面积
(1)将A(2,0)B(0,-6)两点代入得c=-6,b=4.
所以该二次函数的解析式为.
(2)对称轴为x=,C点坐标为(4,0). △ABC的面积=.
(1)利用待定系数法求出b,c的值,得到二次函数解析式;(2)根据对称轴方程求出C点坐标.将△ABC的面积转为坐标轴上线段的乘积计算.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且AB=2.

(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒 ;设,当t 为何值时,s有最小值,并求出最小值。
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明在一次高尔夫球比赛中,从山坡下的O点打出一记球向山坡上的球洞A点飞去,球的飞行路线为抛物线. 如果不考虑空气阻力,当球飞行的水平距离为9米时,球达到最大水平高度为12米.已知山坡OA与水平方向的夹角为30o,O、A两点相距  米.请利用下面所给的平面直角坐标系探索下列问题:

(1)求出点A的坐标;
(2)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:
上市时间(月份)
1
2
3
4
5
6
市场售价(元/千克)
10.5
9
7.5
6
4.5
3
这种蔬菜每千克的种植成本(元/千克)与上市时间(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价(元/千克)关于上市时间(月份)的函数关系式;
(2)若图中抛物线过点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一次函数的图象与轴,轴分别交于点.一个二次函数的图象经过点

(1)求点的坐标,并画出一次函数的图象;
(2)求二次函数的解析式及它的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点(2,5),(4,5)是抛物线上两点,则抛物线的对称轴是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形纸片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B作BH⊥AD与H,BC=BH=2.动点从点出发,以每秒1个单位的速度沿运动到点停止,在运动过程中,过点交折线于点,将纸片沿直线折叠,点的对应点分别是点。设点运动的时间是秒()。
(1)当点和点重合时,求运动时间的值;
(2)在整个运动过程中,设或四边形与梯形重叠部分面积为,请直接写出之间的函数关系式和相应自变量的取值范围;
(3)平移线段,交线段于点,交线段。在直线上存在点,使为等腰直角三角形。请求出线段的所有可能的长度。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图14,矩形ABCD中,AB = 6cm,AD = 3cm,点E在边DC上,且DE = 4cm.动点P从点A开始沿着A→B→C→E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t (s),P、Q两点运动路线与线段PQ围成的图形面积为S (cm2),求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面上一点P从点出发,沿射线OM方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP为对角线的矩形OAPB的边长;过点O且垂直于射线OM的直线与点P同时出发,且与点P沿相同的方向、以相同的速度运动.
(1)在点运动过程中,试判断AB与y轴的位置关系,并说明理由.
(2)设点与直线L都运动了t秒,求此时的矩形OAPB与直线在运动过程中所扫过的区域的重叠部分的面积S(用含t的代数式表示).

查看答案和解析>>

同步练习册答案