精英家教网 > 初中数学 > 题目详情

在直线、圆、正方形、正五角星、平行四边形中,你认为既是中心对称图形又是轴对称图形的有______个.


  1. A.
    5
  2. B.
    4
  3. C.
    3
  4. D.
    2
C
分析:根据轴对称图形与中心对称图形的概念结合所给图形即可作出判断.
解答:直线即是轴对称图形,也是中心对称图形,符合题意;
圆既是轴对称图形,也是中心对称图形,符合题意;
正方形既是轴对称图形,也是中心对称图形,符合题意;
正五角星是轴对称图形,不是中心对称图形,不符合题意;
平行四边形不是轴对称图形,是中心对称图形,不符合题意.
综上可得共有3个符合题意.
故选C.
点评:本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为5cm,Rt△EFG中,∠G=90°,FG=4cm,EG=3cm,且点B、F、C、G在直线l上,△EFG由F、C重合的位置开始,以1cm/秒的速度沿直线l按箭头所表示的方向作匀速直线运动.
(1)当△EFG运动时,求点E分别运动到CD上和AB上的时间;
(2)设x(秒)后,△EFG与正方形ABCD重合部分的面积为y(cm2),求y与x的函数关系式;
(3)在下面的直角坐标系中,画出0≤x≤2时中函数的大致图象;如果以O为圆心的圆与该图象交于点P(x,
89
),与x轴交于点A、B(A在B的左侧),求∠PAB的度数.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

24、阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.
解决下列问题:
(1)菱形的“二分线”可以是
菱形的一条对角线所在的直线

(2)三角形的“二分线”可以是
三角形一边中线所在的直线.

(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,并说明你的画法.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).
问题:
(1)求∠ABC的度数;
(2)求证:△AEB≌△ADC;
(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).
(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′,使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c的顶点为A(4,4),且抛物线经过原点,和x轴相交于另一点B,以AB为一边在直线AB的右侧画正方形ABCD.
(1)求抛物线的解析式和点C、D的坐标;
(2)能否将此抛物线沿着直线x=4平移,使平移后的抛物线恰好经过正方形ABCD的另两个顶点C、D若能,写出平移后抛物线的解析式;若不能,请说明理由;
(3)若以点A(4,4)为圆心,r为半径画圆,请你探究:
①当r=
 
时,⊙A上有且只有一个点到直线BD的距离等于2;
②当r=
 
时,⊙A上有且只有三个点到直线BD的距离等于2;
③随着r的变化,⊙A上到直线BD的距离等于2的点的个数也随着变化,请根据⊙精英家教网A上到直线BD的距离等于2的点的个数,讨论相应的r的值或取值范围.

查看答案和解析>>

同步练习册答案