精英家教网 > 初中数学 > 题目详情
14.观察下面的几个式子:

(1)根据上面的规律第5个式子为:3×(12+22+32+42+52)=11(1+2+3+4+5);
(2)根据上面的规律第n个式子为:3(12+22+32+…+n2)=(2n+1)(1+2+3+4+…+n);
(3)理由你发现的规律计算:12+32+52+…+392=33540.(写出最后得数)

分析 (1)根据题意得到规律即可得到结论;
(2)根据题意得到规律即可得到结论;
(3)根据规律即可得到结论.

解答 解:(1)根据上面的规律第5个式子为:3×(12+22+32+42+52)=11(1+2+3+4+5);
故答案为:3×(12+22+32+42+52)=11(1+2+3+4+5);
(2)根据上面的规律第n个式子为:3(12+22+32+…+n2)=(2n+1)(1+2+3+4+…+n);
故答案为:3(12+22+32+…+n2)=(2n+1)(1+2+3+4+…+n);
(3)∵12+32=10=$\frac{1}{3}$×2(4×22-1),12+32+52=35=$\frac{1}{3}$×3×(4×32-1),12+32+52+72=$\frac{1}{3}$×4×(4×42-1),…,
∴12+32+52+…+(2n+1)2=$\frac{1}{3}$(n+1)•[4×(n+1)2-1],
∴12+32+52+…+392=$\frac{1}{3}$(19+1)[4×(19+1)2-1]=33540.
故答案为:33540.

点评 本题考查了数字的变化类,解此题的关键是找出规律直接解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.
(2)阅读下面的内容,并解决后面的问题:
如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.
解:∵AP、CP分别平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的结论得:$\left\{\begin{array}{l}{∠P+∠3=∠1+∠B①}\\{∠P+∠2=∠4+∠D②}\end{array}\right.$
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P=$\frac{1}{2}$(∠B+∠D)=26°.
①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.
②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.
③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.下列5个说法:
①两个形状相同的图形称为全等图形;
②两个圆是全等图形;
③两个正方形是全等图形;
④全等图形的形状和大小都相同;
⑤面积相等的两个三角形是全等图形.
其中,说法正确的是④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
①(-3)×(-9)-8×(-5);
②-63÷7+45÷(-9);
③-3×22-(-3×2)3;        
④(-0.1)3-$\frac{1}{4}$×(-$\frac{3}{5}$)2
⑤-23-3×(-2)3-(-1)4;      
⑥($\frac{1}{2}$-$\frac{5}{9}$+$\frac{5}{6}$-$\frac{7}{12}$)×(-36);
⑦[11×2-|3÷3|-(-3)2-33]÷$\frac{3}{4}$; 
⑧(-1)3-(1-$\frac{1}{2}$)÷3×[2-(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,∠B=90°,点P从点A开始,沿AB向点B以1cm/s的速度移动,点Q从B点开始沿BC 以2cm/s的速度移动,如果P、Q分别从A、B同时出发:
(1)几秒后四边形APQC的面积是31平方厘米;
(2)若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,一副三角板的两个直角顶点重合在一起.
(1)比较∠EOM和∠FON的大小,并说明为什么?
(2)∠EON与∠FOM的和是多少度?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.函数y=-$\frac{3}{4}$x+3的图象与x轴交点坐标是(4,0),与y轴的交点坐标是(0,3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.多项式5xm+(k-1)x2-(2n+4)x-3是关于x的三次三项式,并且二次项系数为1,求m-k+n的值.

查看答案和解析>>

同步练习册答案