If one side of a triangle is 2 times of another side and it has the largest possible area£¬
then the ratio of its three sides is¡¡£¨Ó¢ººÐ¡´Êµä£ºpossible¿ÉÄܵģ»areaÃæ»ý£»ratio±ÈÂÊ¡¢±ÈÖµ£©
Èý½ÇÐÎÒ»±ßÊÇÁíÒ»±ß³¤¶ÈµÄ2±¶£¬µ±Èý½ÇÐÎÃæ»ý×î´óʱ£¬Èý±ß³¤Ö®±ÈΪ


  1. A.
    1£º2£º3
  2. B.
    1£º1£º2
  3. C.
    Êýѧ¹«Ê½
  4. D.
    Êýѧ¹«Ê½
D
·ÖÎö£ºÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬S=absinc£¬¼´¿ÉµÃ³ö£®
½â´ð£º¡ßÈý½ÇÐεÄÃæ»ý=a¡Á2a¡ÁsinA=a2¡ÁsinA£¬Ôòµ±A=90¶ÈʱÃæ»ý×î´ó£¬
¡àa£¬2aΪֱ½Ç±ß£¬Ð±±ßΪa£¬
¡àÈý±ß³¤Ö®±ÈΪ1£º2£º£®
¹ÊÑ¡£ºD£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁËÒ»°ãÈý½ÇÐεÄÃæ»ý¹«Ê½Ç󷨣¬ÒÔ¼°Èý½Çº¯ÊýÖµ×îÖµÎÊÌ⣬ÌâÄ¿±È½ÏµäÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

In right Fig£¬if the length of the segment AB is 1£¬M is the midpoint  of the segment AB£¬and point C divides the segment MB into two partssuch that MC£ºCB=1£º2£¬then the length of AC is
 
£®
£¨Ó¢ºº´Êµä£ºlength³¤¶È£»segmentÏ߶Σ»midpointÖе㣻divides¡­into·ÖΪ£¬·Ö³É£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøSuppose that in Fig.2£¬the length of side of square ABCD is 1£¬E and F are mid-points of CD and AD respectively£¬GE and CF intersect at a point P£®Then the length of line segment CP is
 
£®£¨Ó¢ºº´Êµä£ºfigure£¨ËõдFig£®£©Í¼£»length ³¤¶È£»square Õý·½ÐΣ»mid-pointÖе㣻intersect Ïཻ£»line segment Ï߶Σ©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

If the ratio of the degree of exterior angle of¡ÏA£¬¡ÏB and¡ÏC that are in the triangle ABC is 5£º4£º3£¬then the ratio of the degree of¡ÏA£¬¡ÏB and¡ÏC is£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º¾ºÈüÌâ ÌâÐÍ£ºµ¥Ñ¡Ìâ

If one side of a triangle is 2 times of another side and it has the largest possible area, then the ratio of its three sides is
[     ]

A.
B.
C.
D.

  £¨Ó¢ººÐ¡´Êµä£ºpossible ¿ÉÄܵģ»areaÃæ»ý£»ratio±ÈÂÊ¡¢±ÈÖµ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸