精英家教网 > 初中数学 > 题目详情

已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.

解:如图,连OQ,
∵点P关于直线OB的对称点是Q,
∴OB垂直平分PQ,
∴∠POB=∠QOB=30°,OP=OQ,
∴∠POQ=60°,
∴△POQ为等边三角形,
∴PQ=PO=2.
分析:连OQ,由点P关于直线OB的对称点是Q,根据轴对称的性质得到OB垂直平分PQ,则∠POB=∠QOB=30°,OP=OQ,得到△POQ为等边三角形,根据等边三角形的性质得PQ=PO=2.
点评:本题考查了轴对称的性质:关于某直线对称的两图象全等,即对应角相等,对应线段相等;对应点的连线段被对称轴垂直平分.也考查了等边三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知∠AOB=30°,点P在∠AOB的内部,P′与P关于OA对称,P″与P关于OB对称,则△OP′P″一定是一个
等边
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点构成的三角形是
等边
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠AOB=30°,将∠AOB绕点O逆时针旋转60°后得到∠EOF,则∠EOF=
30°
30°
.(填度数)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,E,O,A三点共线,OB平分∠AOC,∠DOC=2∠EOD,已知∠AOB=30°,则∠EOD的度数为
40°
40°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠AOB=30°,点P在∠AOB的内部,P1与P关于0B对称,P2与P关于OA对称,则∠P1PP2的度数是(  )

查看答案和解析>>

同步练习册答案