精英家教网 > 初中数学 > 题目详情
如图,已知一次函数y=-x +7与正比例函数y=x的图象交于点A,且与x轴交于点B.

(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
(1)A(3,4) ,B(7,0);(2)①t=2;②t=1或或5或

试题分析:(1)根据图象与坐标轴交点求法直接得出即可,再利用直线交点坐标求法将两直线解析式联立即可得出交点坐标;
(2)①利用S梯形ACOB-SACP-SPOR-SARB=8,表示出各部分的边长,整理出一元二次方程,求出即可;
②根据一次函数与坐标轴的交点得出,∠OBN=∠ONB=45°,进而利用勾股定理以及等腰三角形的性质和直角三角形的判定求出即可.
(1)由题意得,解得
∴A(3,4)
令y=-x+7=0,得x=7
∴B(7,0)
(2)①当P在OC上运动时,0≤t<4时,PO=t,PC=4-t,BR=t,OR=7-t,
∵当以A、P、R为顶点的三角形的面积为8,


∴(AC+BO)×CO-AC×CP-PO×RO-AM×BR=16,
∴(3+7)×4-3×(4-t)-t×(7-t)-4t=16,
∴t2-8t+12=0,
解得:t1=2,t2=6(舍去),
当P在CA上运动,4≤t<7.
由S△APR=×(7-t)×4=8,得t=3(舍)
∴当t=2时,以A、P、R为顶点的三角形的面积为8.
②当P在OC上运动时,0≤t<4.
∴AP= ,AQ= t,PQ=7-t
当AP =AQ时, (4-t)2+32=2(4-t)2,
整理得,t2-8t+7="0." ∴t="1," t=7(舍)
当AP=PQ时,(4-t)2+32=(7-t)2,
整理得,6t="24." ∴t=4(舍去)
当AQ=PQ时,2(4-t)2=(7-t)2
整理得,t2-2t-17="0" ∴t=1±3(舍)
当P在CA上运动时,4≤t<7. 过A作AD⊥OB于D,则AD=BD=4
设直线l交AC于E,则QE⊥AC,AE=RD=t-4,AP=7-t.P点坐标(t-4,4)
点Q的横坐标为7-t,带入到直线y=x中,得点Q的纵坐标为
AQ= 
PQ=
当AP=AQ时,,解得 
当AQ=PQ时,AE=PE,即AE=AP
,解得t=5.
当AP=PQ时,过P作PF⊥AQ于F
 
,解得
∴综上所述,t=1或或5或时,△APQ是等腰三角形.
点评:此题综合性较强,利用函数图象表示出各部分长度,再利用勾股定理求出是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,直线分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样.

(1)根据图像分别求出L1,L2的函数关系式.
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线AB对应的函数解析式是          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线ln⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…ln分别交于点A1,A2,A3,…An,函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果△OA1B1的面积记为S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形An-1AnBnBn-1的面积记作Sn,那么S2011=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将函数的图象向上平移2个单位,所得函数图象的解析式为___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数中,当≤ 6,自变量的取值范围是____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

等腰三角形的周长为30cm.

(1)若底边长为xcm,腰长为ycm,写出y与x的函数关系式;
(2)若腰长为xcm,底边长为ycm,写出y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“节能环保,低碳生活”是我们倡导的一种生活方式.某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台.三种家电的进价及售价如右表所示:
 
进价(元/台)
售价(元/台)
电视机
5000
5500
洗衣机
2000
2160
空 调
2400
2700
 
(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的三倍,请问有哪几种进货方案?
(2)若三种电器在活动期间全部售出,则(1)中哪种方案可使商场获利最多?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知函数的图象不经过第三象限,则       0,       0.

查看答案和解析>>

同步练习册答案