精英家教网 > 初中数学 > 题目详情
7.已知$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+2}$+$\frac{1}{2+a}$=$\sqrt{5}$-1,求a的值.

分析 先利用二次根式的性质得出$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+2}$=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+2-$\sqrt{3}$=1,则原方程可化为1+$\frac{1}{2+a}$=$\sqrt{5}$-1,即$\frac{1}{2+a}$=$\sqrt{5}$-2,然后解方程即可求出a的值.

解答 解:∵$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+2}$=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+2-$\sqrt{3}$=1,
∴原方程可化为1+$\frac{1}{2+a}$=$\sqrt{5}$-1,即$\frac{1}{2+a}$=$\sqrt{5}$-2,
方程两边同时乘以2+a,得($\sqrt{5}$-2)(2+a)=1,
∴2+a=$\sqrt{5}$+2,
∴a=$\sqrt{5}$.
经检验,a=$\sqrt{5}$是原方程的根,
故a的值为$\sqrt{5}$.

点评 本题考查了分母有理化,分式方程的解法,掌握$\sqrt{n}$+$\sqrt{n-1}$的有理化因式是$\sqrt{n}$-$\sqrt{n-1}$是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.因式分解:
(1)7m2-3n+mn-21m
(2)0.3ax+0.6ay+x+2y
(3)x2-a2+2ab-b2
(4)x2-ax-y2+ay.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在?ABCD中,对角线AC,BD交于点O,EF是过点O的一条直线,交AB于点E,交DC于点F.请写出图中的一对全等三角形是△DOF≌△BOE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在△ABC中,AB=AC,点D是AB中点,以D为直角顶点作∠EDF,分别交AC、BC于点E、F,连接EF,若tanB=$\frac{3}{4}$,BF=2,EF=3$\sqrt{5}$,则AE=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,∠BAB′=8,$\frac{AB′}{AB}$=$\frac{B′C′}{BC}$=$\frac{AC′}{AC}$=n,我们将这种变换记为[θ,n]

(1)如图1,△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB′C′,使点B,C,C′在同一条直线上,且四边形ABB′C′为矩形,求θ和n的值;
(2)如图2,△ABC中,AB=AC,∠BAC=30°,对△ABC做变换[θ,n]△AB′C′,使得点B,C,B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值;
(3)如图3,△ABC中,CB=AC=2,AB=3,∠BAC=40°,对△ABC做变换[θ,n]△ADE,使得点B,C,E在同一直线上,且四边形ABDE为等腰梯形(AE∥BD),求①θ和n的值;②BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.因式分解:(x2-2x-1)(x2-2x)-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)2$\sqrt{2}$+3$\sqrt{2}$;
(2)-$\sqrt{3}$+2$\sqrt{3}$-4$\sqrt{3}$;
(3)4$\sqrt{2}$-|$\frac{5}{2}\sqrt{2}$-3$\sqrt{2}$|;
(4)|2$\sqrt{5}$-3$\sqrt{3}$|-4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC(提示:四边形内角和等于360°).
(1)若∠ABC=80°,求∠DFC的度数;
(2)试判断BE与DF的位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知y$\sqrt{\frac{x-1}{y}}$=-$\sqrt{(x-1)y}$,求x、y的取值范围并化简$\sqrt{2xy-({x}^{2}+1)y}$.

查看答案和解析>>

同步练习册答案