精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,AB=13,BC=5,现以AB所在直线为轴旋转一周得一个几何体(两个共底的圆锥).
(1)请画出这个几何体的示意图;
(2)求这个几何体的全面积.

解:(1)如图所示:

(2)∵AB=13,BC=5,
∴由勾股定理得,AC=12,斜边上的高CD×AB=AC×BC,
解得:CD==
由几何体是由两个圆锥组成,
故几何体的表面积=π××12+π××5=
分析:(1)易得此几何体为两个圆锥的组合体,根据已知画出两个共底的圆锥即可;
(2)根据表面积为两个圆锥的侧面积,应先利用勾股定理求得AC长,进而求得圆锥的底面半径.利用圆锥的侧面积=πrl求解即可.
点评:本题主要考查了勾股定理和圆锥侧面面积的计算,正确记忆圆锥侧面积公式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案