精英家教网 > 初中数学 > 题目详情

在同一平面直角坐标系内直线y=x-1、双曲线数学公式、抛物线y=-2x2+12x-15共有多少个交点


  1. A.
    5个
  2. B.
    6个
  3. C.
    7个
  4. D.
    8个
A
分析:对于一次函数y=x-1和反比例函数线,一次函数y=x-1和抛物线y=-2x2+12x-15共可分别联立它们的解析式解方程组,求交点个数;反比例函数和抛物线y=-2x2+12x-15可借助于它们的图象求交点个数.
解答:∵直线y=x-1,抛物线y=-2x2+12x-15,
∴x-1=-2x2+12x-15.
∴2x2-11x+14=0,
a=2,b=-11,c=14,
∴△=b2-4ac=121-4×2×14>0,
∴x=
∴x1=,x2=2.
∴交点坐标为(),(2,1).
∴直线y=x-1和抛物线y=-2x2+12x-15有两个交点.
∵直线y=x-1,双曲线
∴x-1=
∴x2-x-2=0,
a=1,b=-1,c=-2,
∴△=b2-4ac=1-(-8)=9>0
∴x=
∴x1=2,x2=-1.
∴交点坐标为(2,1),(-1,-2).
∴直线y=x-1和双曲线有两个交点.
把抛物线y=-2x2+12x-15配方的:y=-2(x-3)2+3,
∴顶点的坐标为(3,3).
当x=3时,双曲线,y=,当x=3时,抛物线y=-2x2+12x-15=3,
<3,
∴双曲线和抛物线y=-2x2+12x-15,有两个交点.
∵当x=2时,抛物线y=1,
∴点(2,1)在抛物线y=-2x2+12x-15图象上.
在同一平面直角坐标系内直线y=x-1、双曲线、抛物线y=-2x2+12x-15共有5个交点.
故选A.
点评:本题考查一次函数,反比例函数,二次函数的交点个数,解决此类问题的思路联立解析式解方程组即可.有时也要借助与它们的图象.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

函数y=kx+4与y=
k
x
(k≠0)在同一平面直角坐标系内的图象大致是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

二元一次方程x-2y=0的解有无数个,其中它有一个解为
x=2
y=1
,所以在平面直角坐标系中就可以用点(2,1)表示它的一个解,
(1)请在下图中的平面直角坐标系中再描出三个以方程x-2y=0的解为坐标的点;
(2)过这四个点中的任意两点作直线,你有什么发现?直接写出结果;
(3)以方程x-2y=0的解为坐标的点的全体叫做方程x-2y=0的图象.想一想,方程x-2y=0的图象是什么?(直接回答)
(4)由(3)的结论,在同一平面直角坐标系中,画出二元一次方程组
x+y=1
2x-y=2
的图象(画在图中)、由这两个二元一次方程的图象,能得出这个二元一次方程组的解吗?请将表示其解的点P标在平面直角坐标系中,并写出它的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•随州)正比例函数y=kx和反比例函数y=-
k2+1
x
(k是常数且k≠0)在同一平面直角坐标系中的图象可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在同一平面直角坐标系中,画出函数y=-x2+1与y=-x2-1的图象,并说明,通过怎样的平移可以由抛物线y=-x2+1得到抛物线y=-x2-1?

查看答案和解析>>

科目:初中数学 来源: 题型:

直线L1:y=2x+5与直线L2:y=kx+b在同一平面直角坐标系中的图象如图,则关于x的不等式2x+5<kx+b的解集为(  )

查看答案和解析>>

同步练习册答案