精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,
(1)试猜想∠MAN的大小并说明理由.
(2)试证:BM=MN=NC.

解:(1)∠MAN=60°.
理由:∵在△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵ME是AB的垂直平分线,NF是AC的垂直平分线,
∴AM=BM,AN=CN,
∴∠B=∠BAM=30°,∠C=∠CAN=30°,
∴∠MAN=∠BAC-∠BAM-∠CAN=60°;

(2)证明:∵∠B=∠BAM=30°,∠C=∠CAN=30°,
∴∠AMN=∠ANM=60°,
∵∠MAN=60°,
∴△AMN是等边三角形,
∴AM=AN=MN,
∵AM=BM,AN=CN,
∴BM=MN=NC.
分析:(1)由AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,根据线段垂直平分线的性质,可得AM=BM,AN=CN,继而求得∠B=∠BAM=30°,∠C=∠CAN=30°,则可求得∠MAN的大小;
(2)由∠B=∠BAM=30°,∠C=∠CAN=30°,易证得△AMN是等边三角形,则可证得BM=MN=NC.
点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案