分析 根据垂径定理求得CE=ED=2$\sqrt{3}$,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.
解答 解:如图,假设线段CD、AB交于点E,
∵AB是⊙O的直径,弦CD⊥AB,![]()
∴CE=ED=2$\sqrt{3}$,
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
∴OE=DE•cot60°=2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=2,OD=2OE=4,
∴S阴影=S扇形ODB-S△DOE+S△BEC=$\frac{60π×O{D}^{2}}{360}$-$\frac{1}{2}$OE×DE+$\frac{1}{2}$BE•CE=$\frac{8π}{3}$-2$\sqrt{3}$+2$\sqrt{3}$=$\frac{8π}{3}$.
故答案为$\frac{8π}{3}$.
点评 此题考查了垂径定理、扇形面积的计算,解题的关键是学会利用分割法求阴影部分面积,用转化的思想思考问题,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a=2,b=3 | B. | a=-2,b=-3 | C. | a=-2,b=3 | D. | a=2,b=-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com