精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,AB为直径,DE为圆上两点,C为圆外一点,且∠E+∠C=90°

1)求证:BC⊙O的切线.

2)若sinA=BC=6,求O的半径.

【答案】(1)证明见解析;(24

【解析】试题分析:(1)根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠E,再根据三角形的内角和等于180°求出∠ABC=90°,然后根据切线的定义证明即可;

2)根据∠A的正弦求出AC,利用勾股定理列式计算求出AB,然后求解即可.

试题解析:(1)证明:∵∠AE所对的弧都是∴∠A=E,又∵∠E+C=90°∴∠A+C=90°,在ABC中,ABC=180°﹣90°=90°AB为直径,BCO的切线;

2)解:sinA=BC=6=,即=,解得AC=10,由勾股定理得,AB===8AB为直径,∴⊙O的半径是×8=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为(
A.﹣1
B.0
C.1
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解方程x2﹣2x﹣5=0方程可变形为(
A.(x+1)2=4
B.(x﹣1)2=4
C.(x+1)2=6
D.(x﹣1)2=6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解一元二次方程x2+4x﹣9=0时,原方程可变形为(  )

A. x+22=1 B. x+22=7 C. x+22=13 D. x+22=19

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.557.5这一组的频率为0.12,估计总体数据落在54.557.5之间的约有( )个.

A.120B.60C.12D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(1)班组织了一次食品安全知识竞赛,甲、乙两队各5人的成绩如表所示(10分制).

8

10

9

6

9

10

8

9

7

8


(1)甲队成绩的中位数是分;
(2)乙队成绩的众数是分;
(3)分别计算甲队、乙队的方差;并判断哪队的成绩更稳定?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】最近几年,某市持续大面积雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A.非常了解;B.比较了解;C.基本了解;D.不了解

根据调查统计结果,绘制了不完整的三种统计图表.

对雾霾天气了解程度的

条形统计图

对雾霾天气了解程度的

扇形统计图

对雾霾天气了解程度的

统计表

1

2

对雾霾的了解程度

百分比

A.非常了解

5%

B.比较了解

m

C.基本了解

45%

D.不了解

n

请结合统计图表,回答下列问题:

(1)本次参与调查的学生选择“A.非常了解的人数为__________人,m=__________n=__________

(2)请在图1中补全条形统计图;

(3)请计算在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】遵义市某中学为了搞好创建全国文明城市的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:

(1)参加调查测试的学生为多少人?

(2)将条形统计图补充完整;

(3)本次调查测试成绩中的中位数落在哪组内?

(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.

查看答案和解析>>

同步练习册答案