精英家教网 > 初中数学 > 题目详情
在△ABC中,∠A=90°,AB=8,AC=6,M是AB上的动点(不与A、B重合),过M作MN∥BC交AC于点N,以MN为直径作⊙O,设AM=x.
(1)用含x的代数式表示△AMN的面积S;
(2)M在AB上运动,当⊙O与BC相切时(如图①),求x的值;
(3)M在AB上运动,当⊙O与BC相交时(如图②),在⊙O上取一点P,使PM∥AC,连接PN,PM交BC于E,PN交BC于点F,设梯形MNFE的面积为y,求y关于x的函数关系式.

【答案】分析:(1)由已知条件证明△AMN∽△ABC(AA),然后根据相似三角形的对应边成比例求得,然后由三角形的面积公式求得用x的代数式表示的△AMN的面积S;
(2)设BC与⊙O相切于点D,连接AO、OD,则AO=OD=MN.在直角三角形Rt△ABC中,根据勾股定理求得BC的值;然后根据相似三角形的性质求得OD;再过M作MQ⊥BC于Q,构建△BMQ∽△ABC,由相似三角形的对应边成比例解得x的值;
(3)由已知条件证明四边形AMPN是矩形,根据矩形的性质求得PN=AM=x;然后由平行四边形BFNM的性质解得FN=8-x,PF=2x-8;最后利用相似三角形Rt△PEF∽Rt△ABC的性质求得S△PEF值;最后利用“割补法”求得题型的面积.
解答:解:(1)∵MN∥BC,
∴∠AMN=∠B,∠ANM=∠C,
∴△AMN∽△ABC,
,即

∵AM⊥AN,


(2)设BC与⊙O相切于点D,连接AO、OD,则AO=OD=MN,
在Rt△ABC中,
又∵△AMN∽△ABC,
,即


过M作MQ⊥BC于Q,则
则△BMQ∽△ABC,





(3)∵∠A=90°,PM∥AC,∠MPN=90°,
∴四边形AMPN是矩形,
∴PN=AM=x;
又∵四边形BFNM是平行四边形,
∴FN=BM=8-x,PF=PN-FN=x-(8-x)=2x-8,
又Rt△PEF∽Rt△ABC,


∵S△AMN=S△PMN
(0≤x≤8).
点评:本题综合考查了相似三角形的判定与性质、勾股定理及切线的性质.解答此题时,还借用了直径所对的圆周角是直角的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案