初步探索 感悟方法
如图1用水平线和竖直线将平面分成若干个面积为1的小正方形格子,小正方形的顶点为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.

(1)上图中的格点多边形,其内部都只有1个格点,它们的面积S与各边上格点的个数和x的对应关系如下表:
| 序号 |
① |
② |
③ |
④ |
… |
| S |
2 |
2.5 |
3 |
4 |
… |
| x |
4 |
5 |
6 |
8 |
… |
请用含x的代数式表示S,即S=
;
(2)进一步探索:你可以画出一些格点多边形,使这些多边形内部有而且只有2个格点,在这种情况下,用含x的代数式表示S,即S=
;
(3)请你继续探索并归纳:当格点多边形内部有且只有n个格点时,直接写出S与x之间的关系式.
积累经验 拓展延伸
如图2,对等边三角形网格中的类似问题进行探究:等边三角形网格中每个小等边三角形的面积为1,小等边三角形的顶点为格点,以格点为顶点的多边形称为格点多边形.
(4)设格点多边形的面积为S,它各边上格点的个数和为x,当格点多边形内部有且只有n个格点时,直接写出S与x之间的关系式.