精英家教网 > 初中数学 > 题目详情
若实数x、y满足方程,则x与y的关系是(    )。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)有下列4个命题:
①方程x2-(
2
+
3
)x+
6
=0的根是
2
3

②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=
9
4
,则CD=3.
③点P(x,y)的坐标x,y满足x2+y2+2x-2y+2=0,若点P也在y=
k
x
的图象上,则k=-1.
④若实数b、c满足1+b+c>0,1-b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足-1<x0<1.
上述4个命题中,真命题的序号是
①②③④
①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

有下列4个命题中,真命题的序号是(  )
①平面上有5个点(没有任何三个点在同一直线上),可以确定10条直线.
②若直角三角形的两条边长恰为方程x2-7x+12=0的两根,那么它的面积一定是6.
③点P(x,y)的坐标x,y满足x2+y2+2x-2y+2=0,则点P在正比例函数y=-x的图象上.
④若实数b、c满足1+b+c>0,1-b+c<0,则关于x的方程x2+bx+c=0一定有一个实数根x0满足-1<x0<1.

查看答案和解析>>

科目:初中数学 来源: 题型:

若实数a,b满足方程|a2-4|+
b+2
=0 则a+b的值为(  )

查看答案和解析>>

同步练习册答案