分析 (1)由菱形的性质和已知条件得出AB=CD=BC=DA,四边形ABCD是矩形,得出∠A=∠B=∠C=∠D=90°,即可得出结论;
(2)由矩形的性质和已知条件得出∠BAD=∠ABC=∠BCD=∠CDA=90°,四边形ABCD是菱形,得出AB=BC=CD=DA,即可得出结论.
解答 (1)如图1所示:
已知:四边形ABCD是菱形,∠A=90°;
求证:四边形ABCD是正方形;
证明:∵四边形ABCD是菱形,∠A=90°,
∴AB=CD=BC=DA,四边形ABCD是矩形,
∴∠A=∠B=∠C=∠D=90°,
∴四边形ABCD是正方形;
(2)如图2所示:![]()
已知:四边形ABCD是矩形,对角线AC⊥BD;
求证:四边形ABCD是正方形;
证明:∵四边形ABCD是矩形,对角线AC⊥BD,
∴∠BAD=∠ABC=∠BCD=∠CDA=90°,四边形ABCD是菱形,
∴AB=BC=CD=DA,
∴四边形ABCD是正方形.
点评 本题考查了菱形的性质与判定、矩形的性质与判定、正方形的判定方法;熟练掌握矩形和菱形的判定与性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:解答题
| 正多边形边数 | 3 | 4 | 5 | 6 | … | n |
| ∠α的度数 | 60° | 45° | 36° | 30° | … | ($\frac{180}{n}$)° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2015}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{{2}^{2015}}$ | D. | $\frac{1}{{2}^{2014}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com