【题目】我们知道,直线与圆有三种位置关系:相交、相切、相离.类比直线与圆的位置关系,给出如下定义:与坐标轴不平行的直线与抛物线有两个公共点叫做直线与抛物线相交;直线与抛物线有唯一的公共点叫做直线与抛物线相切,这个公共点叫做切点;直线与抛物线没有公共点叫做直线与抛物线相离.
(1)记一次函数的图像为直线,二次函数的图像为抛物线,若直线与抛物线相交,求的取值范围;
(2)若二次函数的图像与轴交于点、,与轴交于点,直线l与CB平行,并且与该二次函数的图像相切,求切点P的坐标.
【答案】(1)(2)
【解析】
(1)将一次函数解析式代入二次函数解析式中可得出关于x的一元二次方程,由直线与抛物线相交可得出关于b的一元一次不等式,解之即可得出b的取值范围;
(2)利用二次函数图象上点的坐标特征可得出点B,C的坐标,利用待定系数法可求出直线BC的解析式,设直线l的解析式为y=x+a,将一次函数解析式代入二次函数解析式中可得出关于x的一元二次方程,由直线与抛物线相切可得出关于a的一元一次方程,解之可得出a的值,解方程组即可求出点P的坐标.
(1)将y=2x+b代入y=x2,整理得:x2﹣2x﹣b=0.
∵直线l与抛物线C相交,∴△=(﹣2)2﹣4×1×(﹣b)>0,解得:b>﹣1.
(2)当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3);
当y=0时,x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0),点B的坐标为(3,0).
设直线BC的解析式为y=mx+n(m≠0),将B(3,0),C(0,﹣3)代入y=mx+n,得:,解得:,∴直线BC的解析式为y=x﹣3.
设直线l的解析式为y=x+a.
将y=x+a代入y=x2﹣2x﹣3,整理得:x2﹣3x﹣(3+a)=0.
∵直线l与二次函数y=x2﹣2x﹣3的图象相切,∴△=(﹣3)2﹣4×1×[﹣(3+a)]=0,解得:a.
当a时,解方程组 ,得:,∴点P的坐标为().
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S△AOC=,求DE的长;
(3)连接EF,求证:EF是⊙O的切线.
【答案】(1) 见解析; (2)3 ;(3)见解析.
【解析】试题分析:(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;
(2)根据S△AOC=,得到S△ACF=,通过△ACF∽△DAE,求得S△DAE=,过A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;
(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.
试题解析:(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,过A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF与△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.
【题型】解答题
【结束】
25
【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为 ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.
(1)如图1,若∠PCB=∠A.
①求证:直线PC是⊙O的切线;
②若CP=CA,OA=2,求CP的长;
(2)如图2,若点M是弧AB的中点,CM交AB于点N,MNMC=9,求BM的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解本学期初三期中调研测试数学试题的命题质量与难度系数,命题教师选取了一个水平相当的初三年级进行分析研究,随机抽取部分学生成绩(得分为整数,满分为130分)分为5组:第一组55~70,第二组70~85,第三组85~100,第四组100~115,第五组115~130;统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:
(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
(2)若将得分转化为等级,规定:得分低于70分评为“D”,70~100分评为“C”,100~115分评为“B”,115~130分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校同学组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | ||||||||||
乙 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是分2,则成绩较为整齐的是 队.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;方程的解是,;,其中结论错误的个数是
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,四边形ABCD内接于,对角线AC和BD相交于点E,AC是的直径.
如图1,连接OB和OD,求证:;
如图2,延长BA到点F,使,在AD上取一点G,使,连接FG和FC,过点G作,垂足为M,过点D作,垂足为N,求的值;
如图3,在的条件下,点H为FG的中点,连接DH交于点K,连接AK,若,,求线段BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以等边三角形 ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是“勒洛三角形”(勒洛 三角形是定宽曲线所能构成的面积最小的图形),若 AB=2,则勒洛三角形的面积为( )
A. π+ B. π-C. 2π+2 D. 2π-2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取n名学生作为样本,采用问卷调查的方式收集数据参与问卷调查的每名学生只能选择其中一项,并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:
补全条形统计图;
若该校共有学生2400名,试估计该校喜爱看电视的学生人数.
若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名,求恰好抽到2名男生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com