精英家教网 > 初中数学 > 题目详情
如图,在长方形ABCD(对边相等,四角都是直角)中,将△ABC沿AC对折至△AEC位置,CE与AD交精英家教网于点F.
(1)求证:△AFC是等腰三角形;
(2)若∠ACB=30°,BC=12cm,求DF的长.
分析:(1)由折叠的性质可知∠ECA=∠BCA,由AD∥BC可知∠DAC=∠BCA,则∠ECA=∠DAC,可证△AFC是等腰三角形;
(2)在Rt△ABC中,BC=12,∠ACB=30°,可求AB的长,由矩形性质得CD=AB,由折叠的性质可知∠ECA=∠ACB=30°,利用互余关系可求∠DCF=30°,在Rt△CDF中求DF即可.
解答:(1)证明:由折叠的性质可知∠ECA=∠BCA,
由AD∥BC可知∠DAC=∠BCA,
∴∠ECA=∠DAC,
∴△AFC是等腰三角形;

(2)解:∵在Rt△ABC中,BC=12,∠ACB=30°,
∴AB=BC•tan∠ACB=12×
3
3
=4
3

∴CD=AB=4
3

由折叠的性质可知∠ECA=∠ACB=30°,
∴∠DCF=90°-∠ECA-∠ACB=30°,
在Rt△CDF中,
DF=CD•tan∠DCF=4
3
×
3
3
=4.
点评:本题考查了折叠的性质,平行线的性质的运用,解直角三角形的有关知识.关键是利用折叠的性质将角、边进行转化.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上.
(1)若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C有
7
7
个.
(2)选取其中一个C点连△ABC,作出△ABC关于直线L对称的图形.

查看答案和解析>>

科目:初中数学 来源:2015届江苏省苏州市八年级上学期期中模拟数学试卷(解析版) 题型:解答题

(8分)如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.

(1)试说明:AF=FC;

(2)如果AB=3,BC=4,求AF的长.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北师大版九年级(上)期末数学复习水平测试卷(解析版) 题型:解答题

如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

同步练习册答案