精英家教网 > 初中数学 > 题目详情

方程数学公式的解为


  1. A.
    x1=4,x2=1
  2. B.
    数学公式
  3. C.
    x=4
  4. D.
    x1=4,x2=-1
C
分析:把等号左边的第一项分母分解因式后,观察发现原分式方程的最简公分母为x(x+1),方程两边乘以最简公分母,将分式方程转化为整式方程求解.
解答:原方程可化为:
方程两边都乘以x(x+1)得:
x+4+2x(x+1)=3x2,即x2-3x-4=0,
即(x-4)(x+1)=0,
解得:x=4或x=-1,
检验:把x=4代入x(x+1)=4×5=20≠0;把x=-1代入x(x+1)=-1×0=0,
∴原分式方程的解为x=4.
故选C.
点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.学生要认识到分式方程验根的原因是在方程两边乘以最简公分母转化为整式方程后,整式方程与分式方程不一定是同解方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知方程:x2+3x-4=0,则方程的解为:
x1=-4,x2=1

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面解题过程,然后解答问题:
解方程:x4-x2-6=0
解:设y=x2,则原方程可化为y2-y-6=0,解得:y1=3,y2=-2
当y=3时,x2=3,?∴x=±
3

当y=-2时,x2=-2,原方程无实数根.
∴原方程的解为:x1=
3
, x2=-
3

这种解方程的方法叫“换元法”.
仔细体会这种方法的过程步骤,然后按照上述步骤解下列方程:
x+1
x
-
2x
x+1
=1

解:设y=
x
x+1
,则原方程可化为关于y的方程:
 

解得:y1=
????
.
, y2=
????
.
?

请你将后面的过程补充完整:

查看答案和解析>>

科目:初中数学 来源: 题型:

4、解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程 (2x+5)2-4(2x+5)+3=0的解为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,设x2-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.
当y1=1时,x2-1=1,∴x=±
2
;当y2=4时,x2-1=4,∴x=±
5

因此原方程的解为:x1=
2
x2=-
2
x3=
5
x4=-
5

(1)已知方程
1
x2-2x
=x2-2x-3
,如果设x2-2x=y,那么原方程可化为
 
(写成关于y的一元二次方程的一般形式).
(2)根据阅读材料,解方程:x(x+3)(x2+3x+2)=24.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.①
解得y1=1,y2=4.
当y1=1时,x2-1=1,所以x2=2,所以x=±
2

当y2=4时,x2-1=4,所以x2=5,所以x=±
5

所以原方程的解为:x1=
2
x2=-
2
x3=
5
x4=-
5

(1)在由原方程得到方程①的过程中,利用
换元
换元
法达到了降次的目的,体现了
转化
转化
的数学思想;
(2)解方程:x4-3x2-4=0.

查看答案和解析>>

同步练习册答案