分析 (1)根据四边形EFHG是正方形,可得EF∥BC,所以△AEF∽△ABC.
(2)设这个正方形零件的边长是xmm,根据$\frac{EF}{BC}$=$\frac{AK}{AD}$,求出这个正方形零件的边长是多少即可.
解答 (1)证明:∵四边形EFHG是正方形,
∴EF∥BC,
∴△AEF∽△ABC.
(2)解:设这个正方形零件的边长是xmm,
∵EF∥BC,
∴$\frac{EF}{BC}$=$\frac{AK}{AD}$,
∴$\frac{x}{120}$=$\frac{80-x}{80}$,
解得x=48
答:这个正方形零件的边长是48mm.
点评 此题主要考查了正方形的特征和应用,以及三角形相似的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3个 | B. | 2个 | C. | 4个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4 | B. | -2 | C. | 4或-2 | D. | ±3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{c}{a+b+c}$ | B. | $\frac{c}{a+b}$ | C. | $\frac{a+c}{a+b+c}$ | D. | $\frac{a+b}{c}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com