精英家教网 > 初中数学 > 题目详情

如果点P在x轴的下方,y轴的左侧,且到x轴、y轴距离分别是a、b,则点P的坐标是

[  ]

A.(a,b)

B.(b,a)

C.(-a,-b)

D.(-b,-a)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在直角坐标系中,点B、C在x轴的负半轴上,点A在y轴的负半轴上,以AC为直径的圆与AB的延长线交于点D,CD=AO,如果AO>BO,且AO、BO是关于x的二次方程x2-14x+48=0的两个根.
(1)求点D的坐标;
(2)定义:在直角坐标系中,有点M(m,n),对于直线y=kx+b,当x=m时,y=km+b>n,则称点M在直线下方;当x=m时,y=km+b=n,则称点M在直线上;当x=m时,y=km+b<n,则称点M在直线上方.
请你根据上述定义解决下列问题:
若点P在直径AC所在直线上,且AC=4AP,直线l经过点P和Q(6,-16),请你判断点D和直线l的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,点A的坐标为(-1,
3
),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(4)若反比例函数y=
k
x
(x>0)的图象有一动点Q,点Q与抛物线上的点A关于点M(1,t)成中心对称,当以线段AB为一直角边的△QAB为直角三角形时,请直接写出相应的反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•咸宁)如图,已知直线y=
13
x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.
(1)点C的坐标是
(0,3)
(0,3)
线段AD的长等于
4
4

(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点C,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案