精英家教网 > 初中数学 > 题目详情

如图1,矩形ABCD中,AB=10cm,AD=6cm,在BC边上取一点E,将△ABE沿AE翻折,使点B落在DC边上的点F处.
(1)求CF和EF的长;
(2)如图2,一动点P从点A出发,以每秒1cm的速度沿AF向终点F作匀速运动,过点P作PM∥EF交AE于点M,过点M作MN∥AF交EF于点N.设点P运动的时间为t(0<t<10),四边形PMNF的面积为S,试探究S的最大值?
(3)以A为坐标原点,AB所在直线为横轴,建立平面直角坐标系,如图3,在(2)的条件下,连接FM,若△AMF为等腰三角形,求点M的坐标.

解:(1)由题意,得AB=AF=10,
∵AD=6,
∴DF=8,
∴CF=2.
设EF=x,则BF=EF=x,CE=6-x
在Rt△CEF中,22+(6-x)2=x2
解得,


(2)∵PM∥EF,
∴△APM∽△AFE,



∵PMNF是矩形,
∴S=PM•PF=

∴当时,

(3)①若AM=FM,则
过点M作MG⊥AB于G,则△AMG∽△AEB,

∴M(5,);
②若AM=AF=10,过点M作MH⊥AB于H,
由△AMH∽△AEB,得AH=3,MH=
∴M(3).
故点M的坐标为(5,)或(3).

分析:(1)根据翻折对称性EF=BE,AF=AB,利用勾股定理求出DF的长,CF=AB-DF,在△CEF中,设EF为x,则CE=6-x,利用勾股定理列式求解即可求出EF;
(2)根据相似三角形对应边成比例求出PM的长,矩形的面积等于PM•PF,再根据二次函数最值问题求解;
(3)因为三角形的腰不明确,分AM=MF和AM=AF两种情况讨论,①当AM=MF时,根据等腰三角形三线合一的性质点M是AE的中点,根据三角形中位线定理即可求出点M的坐标;②当AM=AF时,根据相似三角形对应边成比例求解点M的坐标.
点评:本题综合性较强,主要利用勾股定理,等腰三角形的性质,二次函数最值问题求解,相似三角形对应边成比例的性质,熟练掌握各定理和性质并灵活运用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,连接AC,如果O为△ABC的内心,过O作OE⊥AD于E,作OF⊥CD于F,则矩形OFDE的面积与矩形ABCD的面积的比值为(  )
A、
1
2
B、
2
3
C、
3
4
D、不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,AD=2.点P、Q同时从点A出发,点P以每秒2个单位的速度沿A→B→C→D的方向运动;点Q以每秒1个单位的速度沿A→D→C的方向运动,当P、精英家教网Q两点相遇时,它们同时停止运动.设P、Q两点运动的时间为x(秒),△APQ的面积为S(平方单位).
(1)点P、Q从出发到相遇所用的时间是
 
秒.
(2)求S与x之间的函数关系式.
(3)当S=
72
时,求x的值.
(4)当△AQP为锐角三角形时,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广东模拟)如图,在矩形ABCD中,AC、BD交于点O,∠AEC=90°,连接OE,OF平分∠DOE交DE于F.
求证:OF垂直平分DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=3,BC=4,EF过AC、BD的交点O,则图中阴影部分的面积为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南京)如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=
20°
20°

查看答案和解析>>

同步练习册答案