精英家教网 > 初中数学 > 题目详情
18、如图,有一条双向公路隧道,其横断面由抛物线和矩形ABCD的三边DA、AB、BC围成,隧道最大高度为4.9米,AB=10米,BC=2.4米,若有一辆高为4米、宽为2米的集装箱的汽车要通过隧道,为了使箱顶不碰到隧道顶部,又不违反交通规则(汽车应靠道路右侧行驶,不能超过道路中线),汽车的右侧必须离开隧道右壁几米?
分析:以AB为x轴,其中点为坐标原点建立平面直角坐标系,求得抛物线解析式,进一步利用图象上的点解答即可.
解答:解:如图,建立平面直角坐标系,

由题意知,B点坐标为(5,0),E点坐标为(0,4.9),C点坐标为(5,2.4),
设抛物线解析式为y=ax2+4.9,代入C点
解得a=-0.1,
因此抛物线解析式为y=-0.1x2+4.9;
当汽车高4米,代入抛物线的解析式y=-0.1x2+4.9,
解得x=±3(舍去负值),
即车右侧到中线的水平距离为3米.则汽车的右侧离开隧道右壁2(5-3)米才不至于碰到隧道顶部.
答:汽车的右侧离开隧道右壁2米才不至于碰到隧道顶部.
点评:此题考查待定系数法求函数解析式,以及运用二次函数图象解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4.9m,AB=10m,BC=2.4m,有一辆高为4m、宽为2m的汽车要通过此隧道,若不考虑其他因素,汽车离隧道石壁多少米时才不会碰到隧道顶部?(抛物线部分为隧道顶部,A0,BC为壁)

查看答案和解析>>

科目:初中数学 来源: 题型:044

如图,有一条双向公路隧道,其横截面由抛物线和矩形组成,隧道的最大高度为4.9 mAB=10 mBC=2.4 m.现把隧道的横断面放到直角坐标系中.

(1)求隧道顶部所在抛物线的关系式;

(2)有一高为4 m,宽为2 m带有集装箱的汽车要想通过隧道其右侧离开隧道右壁BC至少多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4.9m,AB=10m,BC=2.4m,有一辆高为4m、宽为2m的汽车要通过此隧道,若不考虑其他因素,汽车离隧道石壁多少米时才不会碰到隧道顶部?(抛物线部分为隧道顶部,A0,BC为壁)

查看答案和解析>>

科目:初中数学 来源:2007年浙江省杭州市临安市锦城一中九年级(上)数学竞赛试卷(解析版) 题型:解答题

如图,有一条双向公路隧道,其横断面由抛物线和矩形ABCD的三边DA、AB、BC围成,隧道最大高度为4.9米,AB=10米,BC=2.4米,若有一辆高为4米、宽为2米的集装箱的汽车要通过隧道,为了使箱顶不碰到隧道顶部,又不违反交通规则(汽车应靠道路右侧行驶,不能超过道路中线),汽车的右侧必须离开隧道右壁几米?

查看答案和解析>>

同步练习册答案