精英家教网 > 初中数学 > 题目详情
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
(1)y与x的关系式为:y=-2x2+340x-12000 (2)当x=85时,y的值最大 (3)当销售单价为75元时,可获得销售利润2250元.   

试题分析:(1)y=(x-50)? w
=(x-50) ? (-2x+240)
=-2x2+340x-12000,
∴y与x的关系式为:y=-2x2+340x-12000. 
(2)y=-2x2+340x-12000=-2 (x-85) 2+2450,
∴当x=85时,y的值最大.       
(3)当y=2250时,可得方程 -2 (x-85 )2 +2450=2250.
解这个方程,得  x1=75,x2=95.         
根据题意,x2=95不合题意应舍去.
∴当销售单价为75元时,可获得销售利润2250元.   
点评:本题考查二次函数,一元二次方程,解答本题需要掌握求二次函数解析式,以及一元二次方程的解法,会正确求一元二次方程的解
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.

(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司营销A,B两种产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系
当x=1时,y=1.4;当x=3时,y=3.6。
信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系
根据以上信息,解答下列问题:
(1)求二次函数解析式;
(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,4),且过点B(-3,0)

(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,已知直线与x轴、y轴分别交于A、C两点,抛物线经过A、C两点,点B是抛物线与x轴的另一个交点,当时,y取最大值.

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且,求点P的坐标;
(3)若直线与(1)中所求的抛物线交于M、N两点,问:
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,请说明理由;
②猜想当∠MON>900时,a的取值范围(不写过程,直接写结论).
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数 (a、m为常数,且a¹0)。
(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;
(2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。
①当△ABC的面积等于1时,求a的值:
②当△ABC的面积与△ABD的面积相等时,求m的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为50米的篱笆围成。已知墙长为26米(如图所示),设这个苗圃园平行于墙的一边的长为米。(1)若垂直于墙的一边长为米,直接写出的函数关系式及其自变量的取值范围;(2)当为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于300平方米时,试结合函数图象,求出的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.

(1)当m=3时,点B的坐标为       ,点E的坐标为         
(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=x2﹣4x+5的最小值是
A.﹣1B.1C.3D.5

查看答案和解析>>

同步练习册答案