精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠ACB=90°,BD是⊙O的直径,弦DE与AC交于点E,且BD=BF.
(1)求证:AC是⊙O的切线;
(2)若BC=6,AD=4,求⊙O的面积.

(1)证明:连接OE,
∵BD=BF,
∴∠BDF=∠F,
∵OD=OE,
∴∠BDF=∠OED,
∴∠ODE=∠F,
∴OE∥BC,
∵在Rt△ABC中,∠ACB=90°,
∴∠OEA=90°,
即OE⊥AC,
∴AC是⊙O的切线;

(2)设半径为x,
∵OE∥BC,
∴△AOE∽△ABC,

∵BC=6,AD=4,
∴AO=4+x,AB=4+2x,

解得:x=4或x=-3(舍去).
∴⊙O的面积为:16π.
分析:(1)连接OE,由OD=OE,BD=BF,易证得∠OED=∠F,即可得OE∥BC,又由在Rt△ABC中,∠ACB=90°,即可得AC是⊙O的切线;
(2)首先设半径为x,易得△AOE∽△ABC,由相似三角形的对应边成比例,即可求得半径,继而求得答案.
点评:此题考查了切线的判定、相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案