精英家教网 > 初中数学 > 题目详情

与点A(1,2)的距离为5,且到x轴的距离为2的点有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:根据点到x轴的距离为2,得出纵坐标为2,而横坐标到1的距离为5,得出横坐标到1的绝对值为5,从而得出要求的点.
解答:∵点A的纵坐标为2,
∴到x轴的距离为2的点在经过点A且平行于x轴的直线上,
又∵点A的横坐标为1,
∴满足条件的点的横坐标到1的距离的绝对值为5,
得出点有:(6,2)(-4,2),(-2,-4)(4,-2).
故选B.
点评:本题涉及到的知识点为:到x轴的距离即纵坐标为2,到1的距离的绝对值为5即横坐标减1 的绝对值为5.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

小王设计了一“对称跳棋”题:如图,在作业本上画一条直线l,在直线l两边各放一粒围棋子A、B,使线段AB长8 cm,并关于直线l对称,在图中P1处有一粒跳棋子,Pl距A点6 cm、与直线l的距离为3 cm,按以下程序起跳:第1次,从Pl点以A为对称中心跳至P2点;第2次,从P2点以l为对称轴跳至P3点;第3次,从P3点以B为对称中心跳至P4点;第4次,从P4点以l对称轴跳至P5点;….精英家教网
(1)棋子跳至P4点时,与点Pl的距离是
 
cm;
(2)棋子按上述程序跳跃2009次后停下,这时它与点B的距离是
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.
(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;
(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?
(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践--应用--探究的过程:
(1)实践:他们对一条公路上横截面为拋物线的单向双车道的隧道(如图①)进行测量,测得一隧道的路面宽为10m,隧道顶部最高处距地面6.25m,并画出了隧道截面图,建立了如图②所示的直角坐标系,请你求出抛物线的解析式.
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖直方向上的高度差至少为0.5m.为了确保安全,问该隧道能否让最宽3m,最高3.5m的两辆厢式货车居中并列行驶(两车并列行驶时不考虑两车间的空隙)?
(3)探究:该课题学习小组为进一步探索抛物线的有关知识,他们借助上述拋物线模型,提出了以下两个问题,请予解答:
I.如图③,在抛物线内作矩形ABCD,使顶点C、D落在拋物线上,顶点A、B落在x轴 上.设矩形ABCD的周长为l求l的最大值.
II•如图④,过原点作一条y=x的直线OM,交抛物线于点M,交抛物线对称轴于点N,P 为直线0M上一动点,过P点作x轴的垂线交抛物线于点Q.问在直线OM上是否存在点P,使以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出P点的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•龙岩质检)如图,矩形ABCD中,AB=20cm、BC=30cm,在距边12cm、距C点20cm的点O处有一钉子.动P、Q同时从点A出发,点P沿A→B→C方向以5cm/s的速度运动,到点C停止运动;点Q沿A→D方向以3cm/s的速度运动,到点D停止运动.P、Q两点用一条可伸缩的橡皮筋连接,设两动点运动t(s)后橡皮筋扫过的面积为y(cm2).
(1)当t=4时,求y的值;
(2)问:t为何值时,橡皮筋刚好接触钉子(即P、O、Q三点在同一直线上);
(3)当4<t≤10时,求y与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•泰州一模)如图是一个抛物线形桥洞示意图,河底线AB长为20m,水面距河底线的高度为1.9m,此时水面宽CD为18m.
(1)求桥顶E到河底线AB的距离;
(2)借助过A、B、E三点的圆与以A、B、E为顶点的三角形,估计这个抛物线形桥洞与线段AB围成图形面积S的范围.

查看答案和解析>>

同步练习册答案